1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
|
/*=========================================================================
Program: Visualization Toolkit
Module: vtkClipVolume.cxx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkClipVolume.h"
#include "vtkCellData.h"
#include "vtkFloatArray.h"
#include "vtkGarbageCollector.h"
#include "vtkImageData.h"
#include "vtkImplicitFunction.h"
#include "vtkMergePoints.h"
#include "vtkInformation.h"
#include "vtkInformationVector.h"
#include "vtkExecutive.h"
#include "vtkObjectFactory.h"
#include "vtkOrderedTriangulator.h"
#include "vtkPointData.h"
#include "vtkUnstructuredGrid.h"
#include "vtkVoxel.h"
#include "vtkGenericCell.h"
#include "vtkTetra.h"
#include "vtkCellArray.h"
#include "vtkIdTypeArray.h"
#include "vtkUnsignedCharArray.h"
#include "vtkIncrementalPointLocator.h"
vtkStandardNewMacro(vtkClipVolume);
vtkCxxSetObjectMacro(vtkClipVolume,ClipFunction,vtkImplicitFunction);
// Construct with user-specified implicit function; InsideOut turned off; value
// set to 0.0; and generate clip scalars turned off. The merge tolerance is set
// to 0.01.
vtkClipVolume::vtkClipVolume(vtkImplicitFunction *cf)
{
this->ClipFunction = cf;
this->InsideOut = 0;
this->Locator = NULL;
this->Value = 0.0;
this->GenerateClipScalars = 0;
this->Mixed3DCellGeneration = 1;
this->GenerateClippedOutput = 0;
this->MergeTolerance = 0.01;
this->Triangulator = vtkOrderedTriangulator::New();
this->Triangulator->PreSortedOn();
// optional clipped output
this->SetNumberOfOutputPorts(2);
vtkUnstructuredGrid *output2 = vtkUnstructuredGrid::New();
this->GetExecutive()->SetOutputData(1, output2);
output2->Delete();
// by default process active point scalars
this->SetInputArrayToProcess(0,0,0,vtkDataObject::FIELD_ASSOCIATION_POINTS,
vtkDataSetAttributes::SCALARS);
}
vtkClipVolume::~vtkClipVolume()
{
if ( this->Locator )
{
this->Locator->UnRegister(this);
this->Locator = NULL;
}
this->Triangulator->Delete();
this->SetClipFunction(NULL);
}
vtkUnstructuredGrid *vtkClipVolume::GetClippedOutput()
{
return vtkUnstructuredGrid::SafeDownCast(
this->GetExecutive()->GetOutputData(1));
}
// Overload standard modified time function. If Clip functions is modified,
// then this object is modified as well.
vtkMTimeType vtkClipVolume::GetMTime()
{
vtkMTimeType mTime, time;
mTime=this->Superclass::GetMTime();
if ( this->Locator != NULL )
{
time = this->Locator->GetMTime();
mTime = ( time > mTime ? time : mTime );
}
if ( this->ClipFunction != NULL )
{
time = this->ClipFunction->GetMTime();
mTime = ( time > mTime ? time : mTime );
}
return mTime;
}
//
// Clip through volume generating tetrahedra
//
int vtkClipVolume::RequestData(
vtkInformation *vtkNotUsed(request),
vtkInformationVector **inputVector,
vtkInformationVector *outputVector)
{
// get the info objects
vtkInformation *inInfo = inputVector[0]->GetInformationObject(0);
vtkInformation *outInfo = outputVector->GetInformationObject(0);
// get the input and output
vtkImageData *input = vtkImageData::SafeDownCast(
inInfo->Get(vtkDataObject::DATA_OBJECT()));
vtkUnstructuredGrid *output = vtkUnstructuredGrid::SafeDownCast(
outInfo->Get(vtkDataObject::DATA_OBJECT()));
vtkUnstructuredGrid *clippedOutput = this->GetClippedOutput();
vtkCellArray *outputConn;
vtkIdTypeArray *outputLoc;
vtkUnsignedCharArray *outputTypes;
vtkIdType cellId, newCellId, i;
int j, k, flip;
vtkPoints *cellPts;
vtkDataArray *clipScalars;
vtkFloatArray *cellScalars;
vtkPoints *newPoints;
vtkIdList *cellIds;
double value, s, x[3], origin[3], spacing[3];
vtkIdType estimatedSize, numCells=input->GetNumberOfCells();
vtkIdType numPts=input->GetNumberOfPoints();
vtkPointData *inPD=input->GetPointData(), *outPD=output->GetPointData();
vtkCellData *inCD=input->GetCellData(), *outCD=output->GetCellData();
vtkCellData *clippedCD=clippedOutput->GetCellData();
vtkCellData *outputCD;
int dims[3], dimension, numICells, numJCells, numKCells, sliceSize;
int extOffset;
int above, below;
vtkIdList *tetraIds;
vtkPoints *tetraPts;
int ii, jj, id, ntetra;
vtkIdType pts[4], npts, *dpts, *outputCount;
vtkDebugMacro(<< "Clipping volume");
// Initialize self; create output objects
//
input->GetDimensions(dims);
input->GetOrigin(origin);
input->GetSpacing(spacing);
extOffset =
input->GetExtent()[0] + input->GetExtent()[2] + input->GetExtent()[4];
for (dimension=3, i=0; i<3; i++)
{
if ( dims[i] <= 1 )
{
dimension--;
}
}
if ( dimension < 3 )
{
vtkErrorMacro("This filter only clips 3D volume data");
return 1;
}
if ( !this->ClipFunction && this->GenerateClipScalars )
{
vtkErrorMacro(<<"Cannot generate clip scalars without clip function");
return 1;
}
// Create objects to hold output of clip operation
//
estimatedSize = numCells;
estimatedSize = estimatedSize / 1024 * 1024; //multiple of 1024
if (estimatedSize < 1024)
{
estimatedSize = 1024;
}
newPoints = vtkPoints::New();
newPoints->Allocate(estimatedSize/2,estimatedSize/2);
this->NumberOfCells = 0;
this->Connectivity = vtkCellArray::New();
this->Connectivity->Allocate(estimatedSize*2); //allocate storage for cells
this->Locations = vtkIdTypeArray::New();
this->Locations->Allocate(estimatedSize);
this->Types = vtkUnsignedCharArray::New();
this->Types->Allocate(estimatedSize);
// locator used to merge potentially duplicate points
if ( this->Locator == NULL )
{
this->CreateDefaultLocator();
}
this->Locator->InitPointInsertion (newPoints, input->GetBounds());
// Determine whether we're clipping with input scalars or a clip function
// and do necessary setup.
if ( this->ClipFunction )
{
vtkFloatArray *tmpScalars = vtkFloatArray::New();
tmpScalars->Allocate(numPts);
inPD = vtkPointData::New();
inPD->ShallowCopy(input->GetPointData());
if ( this->GenerateClipScalars )
{
inPD->SetScalars(tmpScalars);
}
for ( i=0; i < numPts; i++ )
{
s = this->ClipFunction->FunctionValue(input->GetPoint(i));
tmpScalars->InsertTuple(i,&s);
}
clipScalars = tmpScalars;
}
else //using input scalars
{
clipScalars = this->GetInputArrayToProcess(0,inputVector);
if ( !clipScalars )
{
vtkErrorMacro(<<"Cannot clip without clip function or input scalars");
return 1;
}
}
if ( !this->GenerateClipScalars && !input->GetPointData()->GetScalars())
{
outPD->CopyScalarsOff();
}
else
{
outPD->CopyScalarsOn();
}
outPD->InterpolateAllocate(inPD,estimatedSize,estimatedSize/2);
outCD->CopyAllocate(inCD,estimatedSize,estimatedSize/2);
clippedCD->CopyAllocate(inCD,estimatedSize,estimatedSize/2);
// If generating second output, setup clipped output
if ( this->GenerateClippedOutput )
{
this->NumberOfClippedCells = 0;
this->ClippedConnectivity = vtkCellArray::New();
this->ClippedConnectivity->Allocate(estimatedSize); //storage for cells
this->ClippedLocations = vtkIdTypeArray::New();
this->ClippedLocations->Allocate(estimatedSize);
this->ClippedTypes = vtkUnsignedCharArray::New();
this->ClippedTypes->Allocate(estimatedSize);
}
// perform clipping on voxels - compute approriate numbers
value = this->Value;
numICells = dims[0] - 1;
numJCells = dims[1] - 1;
numKCells = dims[2] - 1;
sliceSize = numICells * numJCells;
tetraIds = vtkIdList::New(); tetraIds->Allocate(20);
cellScalars = vtkFloatArray::New(); cellScalars->Allocate(8);
tetraPts = vtkPoints::New(); tetraPts->Allocate(20);
vtkGenericCell *cell=vtkGenericCell::New();
vtkTetra *clipTetra = vtkTetra::New();
// Interior voxels (i.e., inside the clip region) are tetrahedralized using
// 5 tetrahedra. This requires swapping the face diagonals on alternating
// voxels to insure compatibility. Loop over i-j-k directions so that we
// can control the direction of face diagonals on voxels (i.e., the flip
// variable). The flip variable also controls the generation of tetrahedra
// in boundary voxels in ClipTets() and the ordered Delaunay triangulation
// used in ClipVoxel().
int abort=0;
for ( k=0; k < numKCells && !abort; k++)
{
// Check for progress and abort on every z-slice
this->UpdateProgress(static_cast<double>(k) / numKCells);
abort = this->GetAbortExecute();
for ( j=0; j < numJCells; j++)
{
for ( i=0; i < numICells; i++ )
{
flip = (extOffset+i+j+k) & 0x1;
cellId = i + j*numICells + k*sliceSize;
input->GetCell(cellId,cell);
if ( cell->GetCellType() == VTK_EMPTY_CELL )
{
continue;
}
cellPts = cell->GetPoints();
cellIds = cell->GetPointIds();
// gather scalar values for the cell and keep
for ( above=below=0, ii=0; ii < 8; ii++ )
{
s = clipScalars->GetComponent(cellIds->GetId(ii),0);
cellScalars->SetComponent(ii, 0, s);
if ( s >= value )
{
above = 1;
}
else
{
below = 1;
}
}
// take into account inside/out flag
if ( this->InsideOut )
{
above = !above;
below = !below;
}
// See whether voxel is fully inside or outside and triangulate
// according to the flup variable.
if ( (above && !below) ||
(this->GenerateClippedOutput && (below && !above)) )
{
cell->Triangulate(flip, tetraIds, tetraPts);
ntetra = tetraPts->GetNumberOfPoints() / 4;
if (above && !below)
{
outputConn = this->Connectivity;
outputLoc = this->Locations;
outputTypes = this->Types;
outputCount = &this->NumberOfCells;
outputCD = outCD;
}
else
{
outputConn = this->ClippedConnectivity;
outputLoc = this->ClippedLocations;
outputTypes = this->ClippedTypes;
outputCount = &this->NumberOfClippedCells;
outputCD = clippedCD;
}
for (ii=0; ii<ntetra; ii++)
{
id = ii*4;
for (jj=0; jj<4; jj++)
{
tetraPts->GetPoint(id+jj, x);
if ( this->Locator->InsertUniquePoint(x, pts[jj]) )
{
outPD->CopyData(inPD,tetraIds->GetId(id+jj),pts[jj]);
}
}
newCellId = outputConn->InsertNextCell(4,pts);
(*outputCount)++;
outputLoc->InsertNextValue(outputConn->GetTraversalLocation());
outputConn->GetNextCell(npts,dpts); //updates traversal location
outputTypes->InsertNextValue( VTK_TETRA );
outputCD->CopyData(inCD,cellId,newCellId);
}//for each tetra produced by triangulation
}
else if (above == below ) // clipped voxel, have to triangulate
{
if ( this->Mixed3DCellGeneration ) //use vtkTetra clipping templates
{
cell->Triangulate(flip, tetraIds, tetraPts);
this->ClipTets(value, clipTetra, clipScalars, cellScalars,
tetraIds, tetraPts, inPD, outPD,
inCD, cellId, outCD, clippedCD, this->InsideOut);
}
else //use vtkOrderedTriangulator to produce tetrahedra
{
this->ClipVoxel(value, cellScalars, flip, origin, spacing,
cellIds, cellPts, inPD, outPD,
inCD, cellId, outCD, clippedCD);
}
} // using ordered triangulator
}// for i
}// for j
}// for k
// Create the output
output->SetPoints(newPoints);
output->SetCells(this->Types,this->Locations,this->Connectivity);
this->Types->Delete();
this->Locations->Delete();
this->Connectivity->Delete();
output->Squeeze();
vtkDebugMacro(<<"Created: "
<< newPoints->GetNumberOfPoints() << " points, "
<< output->GetNumberOfCells() << " tetra" );
if ( this->GenerateClippedOutput )
{
clippedOutput->SetPoints(newPoints);
clippedOutput->SetCells(this->ClippedTypes,this->ClippedLocations,
this->ClippedConnectivity);
this->ClippedTypes->Delete();
this->ClippedLocations->Delete();
this->ClippedConnectivity->Delete();
clippedOutput->GetPointData()->PassData(outPD);
clippedOutput->Squeeze();
vtkDebugMacro(<<"Created (clipped output): "
<< clippedOutput->GetNumberOfCells() << " tetra");
}
// Update ourselves. Because we don't know upfront how many cells
// we've created, take care to reclaim memory.
//
if ( this->ClipFunction )
{
clipScalars->Delete();
inPD->Delete();
}
// Clean up
newPoints->Delete();
cell->Delete();
tetraIds->Delete();
tetraPts->Delete();
cellScalars->Delete();
clipTetra->Delete();
this->Locator->Initialize();//release any extra memory
return 1;
}
// Method to triangulate and clip voxel using vtkTetra::Clip() method.
// This produces a mixed mesh of tetrahedra and wedges but it is faster
// than using the ordered triangulator. It works by using the usual
// alternating five tetrahedra template per voxel, and then using the
// vtkTetra::Clip() method to produce the output.
//
void vtkClipVolume::ClipTets(double value, vtkTetra *clipTetra,
vtkDataArray *clipScalars,
vtkDataArray *cellScalars, vtkIdList *tetraIds,
vtkPoints *tetraPts, vtkPointData *inPD,
vtkPointData *outPD, vtkCellData *inCD,
vtkIdType cellId, vtkCellData *outCD,
vtkCellData *clippedCD, int insideOut)
{
// Tessellate this cell as if it were inside
vtkIdType ntetra = tetraPts->GetNumberOfPoints() / 4;
int i, id, j, k, numNew;
vtkIdType npts=0, *pts;
// Clip each tetrahedron
for (i=0; i<ntetra; i++)
{
id = i*4;
for (j=0; j<4; j++)
{
clipTetra->PointIds->SetId(j,tetraIds->GetId(id+j));
clipTetra->Points->SetPoint(j,tetraPts->GetPoint(id+j));
cellScalars->
SetComponent(j,0,clipScalars->GetComponent(tetraIds->GetId(id+j),0));
}
clipTetra->Clip(value, cellScalars, this->Locator, this->Connectivity,
inPD, outPD, inCD, cellId, outCD, insideOut);
numNew = this->Connectivity->GetNumberOfCells() - this->NumberOfCells;
this->NumberOfCells = this->Connectivity->GetNumberOfCells();
for (k=0; k<numNew; k++)
{
this->Locations->
InsertNextValue(this->Connectivity->GetTraversalLocation());
this->Connectivity->GetNextCell(npts,pts);
this->Types->InsertNextValue((npts==4?VTK_TETRA:VTK_WEDGE));
}
if ( this->GenerateClippedOutput )
{
clipTetra->Clip(value, cellScalars, this->Locator,
this->ClippedConnectivity, inPD, outPD,
inCD, cellId, clippedCD, !insideOut);
numNew = this->ClippedConnectivity->GetNumberOfCells() -
this->NumberOfClippedCells;
this->NumberOfClippedCells =
this->ClippedConnectivity->GetNumberOfCells();
for (k=0; k<numNew; k++)
{
this->ClippedLocations->InsertNextValue(
this->ClippedConnectivity->GetTraversalLocation() );
this->ClippedConnectivity->GetNextCell(npts,pts);
this->ClippedTypes->InsertNextValue((npts==4?VTK_TETRA:VTK_WEDGE));
}
}
}
}
// Method to triangulate and clip voxel using ordered Delaunay
// triangulation to produce tetrahedra. Voxel is initially triangulated
// using 8 voxel corner points inserted in order (to control direction
// of face diagonals). Then edge intersection points are injected into the
// triangulation. The ordering controls the orientation of any face
// diagonals.
void vtkClipVolume::ClipVoxel(double value, vtkDataArray *cellScalars,
int flip, double vtkNotUsed(origin)[3],
double spacing[3], vtkIdList *cellIds,
vtkPoints *cellPts, vtkPointData *inPD,
vtkPointData *outPD, vtkCellData *inCD,
vtkIdType cellId, vtkCellData *outCD,
vtkCellData *clippedCD)
{
double x[3], s1, s2, t, voxelOrigin[3];
double bounds[6], p1[3], p2[3];
int i, k, edgeNum, numPts, numNew;
vtkIdType id, ptId, npts, *pts;
static int edges[12][2] = { {0,1}, {2,3}, {4,5}, {6,7},
{0,2}, {1,3}, {4,6}, {5,7},
{0,4}, {1,5}, {2,6}, {3,7}};
static int order[2][8] = { {0,3,5,6,1,2,4,7},
{1,2,4,7,0,3,5,6}};//injection order based on flip
// compute bounds for voxel and initialize
cellPts->GetPoint(0,voxelOrigin);
for (i=0; i<3; i++)
{
bounds[2*i] = voxelOrigin[i];
bounds[2*i+1] = voxelOrigin[i] + spacing[i];
}
// Initialize Delaunay insertion process with voxel triangulation.
// No more than 20 points (8 corners + 12 edges) may be inserted.
this->Triangulator->InitTriangulation(bounds,20);
// Inject ordered voxel corner points into triangulation. Recall
// that the PreSortedOn() flag was set in the triangulator.
int type;
vtkIdType internalId[8]; //used to merge points if nearby edge intersection
for (numPts=0; numPts<8; numPts++)
{
ptId = order[flip][numPts];
// Currently all points are injected because of the possibility
// of intersection point merging.
s1 = cellScalars->GetComponent(ptId,0);
if ( (s1 >= value && !this->InsideOut) || (s1 < value && this->InsideOut) )
{
type = 0; //inside
}
else
{
//type 1 is "outside"; type 4 is don't insert
type = (this->GenerateClippedOutput ? 1 : 4);
}
cellPts->GetPoint(ptId, x);
if ( this->Locator->InsertUniquePoint(x, id) )
{
outPD->CopyData(inPD, cellIds->GetId(ptId), id);
}
internalId[ptId] = this->Triangulator->InsertPoint(id, x, x, type);
}//for eight voxel corner points
// For each edge intersection point, insert into triangulation. Edge
// intersections come from clipping value. Have to be careful of
// intersections near exisiting points (causes bad Delaunay behavior).
for (edgeNum=0; edgeNum < 12; edgeNum++)
{
s1 = cellScalars->GetComponent(edges[edgeNum][0],0);
s2 = cellScalars->GetComponent(edges[edgeNum][1],0);
if ( (s1 < value && s2 >= value) || (s1 >= value && s2 < value) )
{
t = (value - s1) / (s2 - s1);
// Check to see whether near the intersection is near a voxel corner.
// If so,have to merge requiring a change of type to type=boundary.
if ( t < this->MergeTolerance )
{
this->Triangulator->UpdatePointType(internalId[edges[edgeNum][0]], 2);
continue;
}
else if (t > (1.0 - this->MergeTolerance) )
{
this->Triangulator->UpdatePointType(internalId[edges[edgeNum][1]], 2);
continue;
}
// generate edge intersection point
cellPts->GetPoint(edges[edgeNum][0],p1);
cellPts->GetPoint(edges[edgeNum][1],p2);
for (i=0; i<3; i++)
{
x[i] = p1[i] + t * (p2[i] - p1[i]);
}
// Incorporate point into output and interpolate edge data as necessary
if ( this->Locator->InsertUniquePoint(x, ptId) )
{
outPD->InterpolateEdge(inPD, ptId, cellIds->GetId(edges[edgeNum][0]),
cellIds->GetId(edges[edgeNum][1]), t);
}
//Insert into Delaunay triangulation
this->Triangulator->InsertPoint(ptId,x,x,2);
}//if edge intersects value
}//for all edges
// triangulate the points
this->Triangulator->Triangulate();
// Add the triangulation to the mesh
vtkIdType newCellId;
this->Triangulator->AddTetras(0,this->Connectivity);
numNew = this->Connectivity->GetNumberOfCells() - this->NumberOfCells;
this->NumberOfCells = this->Connectivity->GetNumberOfCells();
for (k=0; k<numNew; k++)
{
newCellId = this->Locations->
InsertNextValue(this->Connectivity->GetTraversalLocation());
this->Connectivity->GetNextCell(npts,pts); //updates traversal location
this->Types->InsertNextValue(VTK_TETRA);
outCD->CopyData(inCD,cellId,newCellId);
}
if ( this->GenerateClippedOutput )
{
this->Triangulator->AddTetras(1,this->ClippedConnectivity);
numNew = this->ClippedConnectivity->GetNumberOfCells() -
this->NumberOfClippedCells;
this->NumberOfClippedCells = this->ClippedConnectivity->GetNumberOfCells();
for (k=0; k<numNew; k++)
{
newCellId = this->ClippedLocations->
InsertNextValue(this->ClippedConnectivity->GetTraversalLocation());
this->ClippedConnectivity->GetNextCell(npts,pts);
this->ClippedTypes->InsertNextValue(VTK_TETRA);
clippedCD->CopyData(inCD,cellId,newCellId);
}
}
}
// Specify a spatial locator for merging points. By default,
// an instance of vtkMergePoints is used.
void vtkClipVolume::SetLocator(vtkIncrementalPointLocator *locator)
{
if ( this->Locator == locator )
{
return;
}
if ( this->Locator )
{
this->Locator->UnRegister(this);
this->Locator = NULL;
}
if (locator)
{
locator->Register(this);
}
this->Locator = locator;
this->Modified();
}
void vtkClipVolume::CreateDefaultLocator()
{
if ( this->Locator == NULL )
{
this->Locator = vtkMergePoints::New();
}
}
int vtkClipVolume::FillInputPortInformation(int, vtkInformation *info)
{
info->Set(vtkAlgorithm::INPUT_REQUIRED_DATA_TYPE(), "vtkImageData");
return 1;
}
void vtkClipVolume::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os,indent);
if ( this->ClipFunction )
{
os << indent << "Clip Function: " << this->ClipFunction << "\n";
}
else
{
os << indent << "Clip Function: (none)\n";
}
os << indent << "InsideOut: " << (this->InsideOut ? "On\n" : "Off\n");
os << indent << "Value: " << this->Value << "\n";
os << indent << "Merge Tolerance: " << this->MergeTolerance << "\n";
if ( this->Locator )
{
os << indent << "Locator: " << this->Locator << "\n";
}
else
{
os << indent << "Locator: (none)\n";
}
os << indent << "Generate Clip Scalars: "
<< (this->GenerateClipScalars ? "On\n" : "Off\n");
os << indent << "Generate Clipped Output: "
<< (this->GenerateClippedOutput ? "On\n" : "Off\n");
os << indent << "Mixed 3D Cell Type: "
<< (this->Mixed3DCellGeneration ? "On\n" : "Off\n");
}
//----------------------------------------------------------------------------
void vtkClipVolume::ReportReferences(vtkGarbageCollector* collector)
{
this->Superclass::ReportReferences(collector);
// These filters share our input and are therefore involved in a
// reference loop.
vtkGarbageCollectorReport(collector, this->ClipFunction, "ClipFunction");
}
|