1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542
|
/*=========================================================================
Program: Visualization Toolkit
Module: vtkContourTriangulator.cxx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkContourTriangulator.h"
#include "vtkDataSet.h"
#include "vtkInformation.h"
#include "vtkInformationVector.h"
#include "vtkObjectFactory.h"
#include "vtkPolyData.h"
#include "vtkPoints.h"
#include "vtkCellArray.h"
#include "vtkCellData.h"
#include "vtkPointData.h"
#include "vtkMath.h"
#include "vtkPolygon.h"
#include "vtkLine.h"
#include "vtkMatrix4x4.h"
#include "vtkIncrementalOctreePointLocator.h"
#include <vector>
#include <algorithm>
#include <utility>
vtkStandardNewMacro(vtkContourTriangulator);
//----------------------------------------------------------------------------
vtkContourTriangulator::vtkContourTriangulator()
{
this->TriangulationError = 0;
this->TriangulationErrorDisplay = 0;
}
//----------------------------------------------------------------------------
vtkContourTriangulator::~vtkContourTriangulator()
{
}
//----------------------------------------------------------------------------
void vtkContourTriangulator::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os,indent);
os << indent << "TriangulationError: "
<< this->TriangulationError << "\n";
os << indent << "TriangulationErrorDisplay: "
<< (this->TriangulationErrorDisplay ? "On\n" : "Off\n" );
}
//----------------------------------------------------------------------------
int vtkContourTriangulator::RequestData(
vtkInformation *vtkNotUsed(request),
vtkInformationVector **inputVector,
vtkInformationVector *outputVector)
{
this->TriangulationError = 0;
// Get the info objects
vtkInformation *inInfo = inputVector[0]->GetInformationObject(0);
vtkInformation *outInfo = outputVector->GetInformationObject(0);
// Get the input and output
vtkPolyData *input = vtkPolyData::SafeDownCast(
inInfo->Get(vtkDataObject::DATA_OBJECT()));
vtkPolyData *output = vtkPolyData::SafeDownCast(
outInfo->Get(vtkDataObject::DATA_OBJECT()));
vtkCellArray *lines = input->GetLines();
if (lines == 0 || lines->GetNumberOfCells() == 0)
{
return 1;
}
input->BuildCells();
vtkCellArray *polys = vtkCellArray::New();
output->SetPolys(polys);
output->SetPoints(input->GetPoints());
polys->Delete();
this->TriangulationError = !vtkContourTriangulator::TriangulateContours(
input, input->GetNumberOfVerts(), lines->GetNumberOfCells(), polys, 0);
if (this->TriangulationError && this->TriangulationErrorDisplay)
{
vtkErrorMacro("Triangulation failed, output might have holes.");
}
return 1;
}
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
// Everything below this point is support code for TriangulateContours()
// and TriangulatePolygon().
//
// TriangulateContours uses the following steps:
// 1) Join line segments into contours, never change line directions
// 2) If any contours aren't closed, and if a loose end is on the hull
// of the point set, try to connect it with another loose end on the hull
// 3) Remove degenerate points and points at 180 degree vertices
// 4) Group polygons according to which polygons are inside others
// 5) Cut the "hole" polygons to make simple polygons
// 6) Check for pinch-points to ensure that polygons are simple polygons
// 7) Triangulate polygons with vtkPolygon::Triangulate()
// 8) Add triangles for each point removed in Step 3
//
// In other words, this routine does a lot of work to process the contours
// so that vtkPolygon can be used to triangulate them (vtkPolygon only does
// simple polygons and even then it will fail on degenerate vertices or
// vertices with 180 degree angles).
//
// The whole mess below could be replaced by any robust triangulation code
// that can deal with holes. Also, it is O(n^2) while available algorithms
// are O(n log n). The vtkDelaunay2D filter will go into infinite recursion
// for some triangulations, hence it cannot be used.
//----------------------------------------------------------------------------
namespace {
//----------------------------------------------------------------------------
// A helper class: a bitfield that is always as large as needed.
// For our purposes this is much more convenient than a bool vector,
// which would have to be resized and range-checked externally.
class vtkCCSBitArray
{
public:
void set(size_t bit, int val) {
size_t n = (bit >> 5);
size_t i = (bit & 0x1f);
if (n >= bitstorage.size())
{ bitstorage.insert(bitstorage.end(),n+1-bitstorage.size(),0); }
unsigned int chunk = bitstorage[n];
unsigned int bitval = 1u << i;
if (val) { chunk = chunk | bitval; }
else { chunk = chunk & ~bitval; }
bitstorage[n] = chunk;
};
int get(size_t bit) {
size_t n = (bit >> 5);
size_t i = (bit & 0x1f);
if (n >= bitstorage.size()) { return 0; }
unsigned int chunk = bitstorage[n];
return ((chunk >> i) & 1);
};
void clear() {
bitstorage.clear();
};
private:
std::vector<unsigned int> bitstorage;
};
//----------------------------------------------------------------------------
// Simple typedefs for stl-based polygons.
// A poly type that is just a vector of vtkIdType
typedef std::vector<vtkIdType> vtkCCSPoly;
// A poly group type that holds indices into a vector of polys.
// A poly group is used to represent a polygon with holes.
// The first member of the group is the outer poly, and all
// other members are the holes.
typedef std::vector<size_t> vtkCCSPolyGroup;
// Extra info for each edge in a poly
typedef std::vector<vtkIdType> vtkCCSPolyEdges;
// A cell array, but as an STL vector
typedef std::vector<vtkIdType> vtkCCSCellArray;
//----------------------------------------------------------------------------
// These are the prototypes for helper functions for manipulating
// polys that are stored in stl vectors.
// Tolerances are relative to polygon size
#define VTK_CCS_POLYGON_TOLERANCE 1e-5
// Take a set of lines, join them tip-to-tail to create polygons
void vtkCCSMakePolysFromLines(
vtkPolyData *data, vtkIdType firstLine, vtkIdType endLine, bool oriented,
std::vector<vtkCCSPoly> &newPolys,
std::vector<size_t> &incompletePolys);
// Finish any incomplete polygons by trying to join loose ends
void vtkCCSJoinLooseEnds(
std::vector<vtkCCSPoly> &polys, std::vector<size_t> &incompletePolys,
vtkPoints *points, const double normal[3]);
// Check for polygons that contain multiple loops, and split the loops apart.
// Returns the number of splits made.
int vtkCCSSplitAtPinchPoints(
std::vector<vtkCCSPoly> &polys, vtkPoints *points,
std::vector<vtkCCSPolyGroup> &polyGroups,
std::vector<vtkCCSPolyEdges> &polyEdges,
const double normal[3], bool oriented);
// Given three vectors p->p1, p->p2, and p->p3, this routine
// checks to see if progressing from p1 to p2 to p3 is a clockwise
// or counterclockwise progression with respect to the normal.
// The return value is -1 for clockwise, +1 for counterclockwise,
// and 0 if any two of the vectors are coincident.
int vtkCCSVectorProgression(
const double p[3], const double p1[3],
const double p2[3], const double p3[3], const double normal[3]);
// Compute polygon bounds. Poly must have at least one point.
double vtkCCSPolygonBounds(
const vtkCCSPoly &poly, vtkPoints *points, double bounds[6]);
// Remove points that are not vertices of the polygon,
// i.e. remove any points that are on an edge but not at a corner.
// This simplifies all remaining steps and improves the triangulation.
// The original edges are appended to the originalEdges cell array,
// where each cell in this array will be a polyline consisting of two
// corner vertices and all the points in between.
void vtkCCSFindTrueEdges(
std::vector<vtkCCSPoly> &newPolys, vtkPoints *points,
std::vector<vtkCCSPolyEdges> &polyEdges, vtkCCSCellArray &originalEdges);
// Reverse a polygon that has been simplified with vtkCSSFindTrueEdges
void vtkCCSReversePoly(
vtkCCSPoly &poly, vtkCCSPolyEdges &edges, vtkCCSCellArray &originalEdges);
// Set sense to 1 if the poly's normal matches the specified normal, and
// zero otherwise. Returns zero if poly is degenerate.
int vtkCCSCheckPolygonSense(
vtkCCSPoly &polys, vtkPoints *points, const double normal[3], bool &sense);
// Add a triangle to the output, and subdivide the triangle if one
// of the edges originally had more than two points, as indicated
// by originalEdges. If scalars is not null, then add a scalar for
// each triangle.
void vtkCCSInsertTriangle(
vtkCellArray *polys, const vtkCCSPoly &poly, const size_t trids[3],
const vtkCCSPolyEdges &polyEdges, const vtkCCSCellArray &originalEdges);
// Check for polys within other polys, i.e. find polys that are holes and
// add them to the "polyGroup" of the poly that they are inside of.
void vtkCCSMakeHoleyPolys(
std::vector<vtkCCSPoly> &polys, vtkPoints *points,
std::vector<vtkCCSPolyGroup> &polyGroups,
std::vector<vtkCCSPolyEdges> &polyEdges,
vtkCCSCellArray &originalEdges,
const double normal[3], bool oriented);
// For each poly that has holes, make two cuts between each hole and
// the outer poly in order to turn the polygon+hole into two polys.
int vtkCCSCutHoleyPolys(
std::vector<vtkCCSPoly> &polys, vtkPoints *points,
std::vector<vtkCCSPolyGroup> &polyGroups,
std::vector<vtkCCSPolyEdges> &polyEdges,
const double normal[3]);
// Compute the normal of a polygon
double vtkCCSPolygonNormal(
const vtkCCSPoly &poly, vtkPoints *points, double normal[3]);
// Compute the quality of a triangle
double vtkCCSTriangleQuality(
const double p0[3], const double p1[3], const double p2[3],
const double normal[3]);
// Triangulate a polygon that has been simplified by FindTrueEdges.
// This will re-insert the original edges. The output tridss are
// appended to "polys". The final two arguments (polygon and
// triangles) are only for temporary storage.
// The return value is true if triangulation was successful.
int vtkCCSTriangulate(
const vtkCCSPoly &poly, vtkPoints *points,
const vtkCCSPolyEdges &polyEdges, const vtkCCSCellArray &originalEdges,
vtkCellArray *polys, const double normal[3]);
// ---------------------------------------------------
// compute the normal of a polygon
double vtkCCSPolygonNormal(
const vtkCCSPoly &poly, vtkPoints *points, double normal[3])
{
double nn[3] = { 0.0, 0.0, 0.0 };
double p0[3], p1[3], p2[3];
size_t n = poly.size();
points->GetPoint(poly[0], p0);
points->GetPoint(poly[1], p1);
for (size_t j = 2; j < n; j++)
{
double v1[3], v2[3];
points->GetPoint(poly[j], p2);
v1[0] = p2[0] - p1[0];
v1[1] = p2[1] - p1[1];
v1[2] = p2[2] - p1[2];
v2[0] = p0[0] - p1[0];
v2[1] = p0[1] - p1[1];
v2[2] = p0[2] - p1[2];
nn[0] += v1[1]*v2[2] - v1[2]*v2[1];
nn[1] += v1[2]*v2[0] - v1[0]*v2[2];
nn[2] += v1[0]*v2[1] - v1[1]*v2[0];
p1[0] = p2[0];
p1[1] = p2[1];
p1[2] = p2[2];
}
double norm2 = nn[0]*nn[0] + nn[1]*nn[1] + nn[2]*nn[2];
if (norm2 > 0)
{
double norm = sqrt(norm2);
normal[0] = nn[0]/norm;
normal[1] = nn[1]/norm;
normal[2] = nn[2]/norm;
}
return norm2;
}
// ---------------------------------------------------
// Compute the quality of a triangle
double vtkCCSTriangleQuality(
const double p0[3], const double p1[3], const double p2[3],
const double normal[3])
{
double u[3], v[3], w[3];
u[0] = p1[0] - p0[0];
u[1] = p1[1] - p0[1];
u[2] = p1[2] - p0[2];
v[0] = p2[0] - p1[0];
v[1] = p2[1] - p1[1];
v[2] = p2[2] - p1[2];
w[0] = p0[0] - p2[0];
w[1] = p0[1] - p2[1];
w[2] = p0[2] - p2[2];
double area2 = (u[1]*v[2] - u[2]*v[1])*normal[0] +
(u[2]*v[0] - u[0]*v[2])*normal[1] +
(u[0]*v[1] - u[1]*v[0])*normal[2];
double perim = sqrt(u[0]*u[0] + u[1]*u[1] + u[2]*u[2]) +
sqrt(v[0]*v[0] + v[1]*v[1] + v[2]*v[2]) +
sqrt(w[0]*w[0] + w[1]*w[1] + w[2]*w[2]);
perim *= perim; // square the perimiter
perim = (perim != 0 ? perim : 1.0);
// use a normalization factor so equilateral quality is 1.0
return area2/perim*10.392304845413264;
}
// ---------------------------------------------------
// Triangulate a polygon that has been simplified by FindTrueEdges.
// This will re-insert the original edges. The output triangles are
// appended to "polys" and, for each stored triangle, "color" will
// be added to "scalars". The final two arguments (polygon and
// triangles) are only for temporary storage.
// The return value is true if triangulation was successful.
int vtkCCSTriangulate(
const vtkCCSPoly &poly, vtkPoints *points,
const vtkCCSPolyEdges &polyEdges, const vtkCCSCellArray &originalEdges,
vtkCellArray *polys, const double normal[3])
{
int triangulationFailure = 0;
size_t n = poly.size();
// If the poly is a line, then skip it
if (n < 3)
{
return 1;
}
// If the poly is a triangle, then pass it
else if (n == 3)
{
size_t trids[3];
trids[0] = 0;
trids[1] = 1;
trids[2] = 2;
vtkCCSInsertTriangle(polys, poly, trids, polyEdges, originalEdges);
}
// If the poly has 4 or more points, triangulate it
else
{
double ppoint[3], point[3], npoint[3];
size_t i, j, k;
std::vector<std::pair<size_t, double> > verts(n);
for (i = 0; i < n; i++)
{
verts[i].first = i;
verts[i].second = 0;
}
// compute the triangle quality for each vert
k = n - 2;
points->GetPoint(poly[verts[k].first], point);
i = n - 1;
points->GetPoint(poly[verts[i].first], npoint);
size_t concave = 0;
double maxq = 0;
size_t maxi = 0;
for (j = 0; j < n; j++)
{
ppoint[0] = point[0]; ppoint[1] = point[1]; ppoint[2] = point[2];
point[0] = npoint[0]; point[1] = npoint[1]; point[2] = npoint[2];
points->GetPoint(poly[verts[j].first], npoint);
double q = vtkCCSTriangleQuality(ppoint, point, npoint, normal);
if (q > maxq)
{
maxi = i;
maxq = q;
}
concave += (q < 0);
verts[i].second = q;
i = j;
}
// perform the ear-cut triangulation
for (;;)
{
// if no potential ears were found, then fail
if (maxq <= VTK_DBL_MIN)
{
triangulationFailure = true;
break;
}
i = maxi;
j = (i+1 != n ? i+1 : 0);
k = (i != 0 ? i-1 : n-1);
if (verts[i].second > 0)
{
bool foundEar = true;
points->GetPoint(poly[verts[j].first], npoint);
points->GetPoint(poly[verts[k].first], ppoint);
// only do ear check if there are concave vertices
if (concave)
{
// get the normal of the split plane
double v[3], u[3];
v[0] = npoint[0] - ppoint[0];
v[1] = npoint[1] - ppoint[1];
v[2] = npoint[2] - ppoint[2];
vtkMath::Cross(v, normal, u);
double d = vtkMath::Dot(ppoint, u);
size_t jj = (j+1 != n ? j+1 : 0);
double x[3];
points->GetPoint(poly[verts[jj].first], x);
bool side = (vtkMath::Dot(x, u) < d);
bool foundNegative = side;
// check for crossings of the split plane
jj = (jj+1 != n ? jj+1 : 0);
for (; foundEar && jj != k; jj = (jj+1 != n ? jj+1 : 0))
{
double y[3];
y[0] = x[0]; y[1] = x[1]; y[2] = x[2];
points->GetPoint(poly[verts[jj].first], x);
if (side ^ (vtkMath::Dot(x, u) < d))
{
side = !side;
foundNegative = true;
double s, t;
foundEar = (vtkLine::Intersection(ppoint,npoint,x,y,s,t) == 0);
}
}
foundEar &= foundNegative;
}
if (!foundEar)
{
// don't try again until it is split
verts[i].second = VTK_DBL_MIN;
}
else
{
// create a triangle from vertex and neighbors
size_t trids[3];
trids[0] = verts[i].first;
trids[1] = verts[j].first;
trids[2] = verts[k].first;
vtkCCSInsertTriangle(polys, poly, trids, polyEdges, originalEdges);
// remove the vertex i
verts.erase(verts.begin() + i);
k -= (i == 0);
j -= (j != 0);
// break if this was final triangle
if (--n < 3)
{
break;
}
// re-compute quality of previous point
size_t kk = (k != 0 ? k-1 : n-1);
points->GetPoint(poly[verts[kk].first], point);
double kq = vtkCCSTriangleQuality(point, ppoint, npoint, normal);
concave -= ((verts[k].second < 0) & (kq >= 0));
verts[k].second = kq;
// re-compute quality of next point
size_t jj = (j+1 != n ? j+1 : 0);
points->GetPoint(poly[verts[jj].first], point);
double jq = vtkCCSTriangleQuality(ppoint, npoint, point, normal);
concave -= ((verts[j].second < 0) & (jq >= 0));
verts[j].second = jq;
}
}
// find the highest-quality ear candidate
maxi = 0;
maxq = verts[0].second;
for (i = 1; i < n; i++)
{
double q = verts[i].second;
if (q > maxq)
{
maxi = i;
maxq = q;
}
}
}
}
return !triangulationFailure;
}
// ---------------------------------------------------
// Here is the code for creating polygons from line segments.
void vtkCCSMakePolysFromLines(
vtkPolyData *data, vtkIdType firstLine, vtkIdType endLine, bool oriented,
std::vector<vtkCCSPoly> &newPolys,
std::vector<size_t> &incompletePolys)
{
vtkIdType npts = 0;
vtkIdType *pts = 0;
// Bitfield for marking lines as used
vtkCCSBitArray usedLines;
// Require cell links to get lines from pointIds
data->BuildLinks(data->GetPoints()->GetNumberOfPoints());
size_t numNewPolys = 0;
vtkIdType remainingLines = endLine - firstLine;
while (remainingLines > 0)
{
// Create a new poly
size_t polyId = numNewPolys++;
newPolys.push_back(vtkCCSPoly());
vtkCCSPoly &poly = newPolys[polyId];
vtkIdType lineId = 0;
int completePoly = 0;
// start the poly
for (lineId = firstLine; lineId < endLine; lineId++)
{
if (!usedLines.get(lineId-firstLine))
{
data->GetCellPoints(lineId, npts, pts);
vtkIdType n = npts;
if (npts > 2 && pts[0] == pts[npts-1])
{
n = npts - 1;
completePoly = 1;
}
poly.resize(static_cast<size_t>(n));
for (vtkIdType i = 0; i < n; i++)
{
poly[i] = pts[i];
}
break;
}
}
usedLines.set(lineId-firstLine, 1);
remainingLines--;
int noLinesMatch = (remainingLines == 0 && !completePoly);
while (!completePoly && !noLinesMatch && remainingLines > 0)
{
// This is cleared if a match is found
noLinesMatch = 1;
// Number of points in the poly
size_t npoly = poly.size();
vtkIdType lineEndPts[2];
vtkIdType endPts[2];
endPts[0] = poly[npoly-1];
endPts[1] = poly[0];
// For both open ends of the polygon
for (int endIdx = 0; endIdx < 2; endIdx++)
{
std::vector<vtkIdType> matches;
unsigned short ncells;
vtkIdType *cells;
data->GetPointCells(endPts[endIdx], ncells, cells);
// Go through all lines that contain this endpoint
for (vtkIdType icell = 0; icell < ncells; icell++)
{
lineId = cells[icell];
if (lineId >= firstLine && lineId < endLine &&
!usedLines.get(lineId-firstLine))
{
data->GetCellPoints(lineId, npts, pts);
lineEndPts[0] = pts[0];
lineEndPts[1] = pts[npts-1];
// Check that poly end matches line end
if (endPts[endIdx] == lineEndPts[endIdx] ||
(!oriented && endPts[endIdx] == lineEndPts[1-endIdx]))
{
matches.push_back(lineId);
}
}
}
if (matches.size() > 0)
{
// Multiple matches mean we need to decide which path to take
if (matches.size() > 1)
{
// Remove double-backs
size_t k = matches.size();
do
{
lineId = matches[--k];
data->GetCellPoints(lineId, npts, pts);
lineEndPts[0] = pts[0];
lineEndPts[1] = pts[npts-1];
// check if line is reversed
bool r = (endPts[endIdx] != lineEndPts[endIdx]);
if ((r == 0 && ((endIdx == 0 && poly[npoly-2] == pts[1]) ||
(endIdx == 1 && poly[1] == pts[npts-2]))) ||
(r != 0 && ((endIdx == 0 && poly[npoly-2] == pts[npts-2]) ||
(endIdx == 1 && poly[1] == pts[1]))))
{
matches.erase(matches.begin()+k);
}
}
while (k > 0 && matches.size() > 1);
// If there are multiple matches due to intersections,
// they should be dealt with here.
}
lineId = matches[0];
data->GetCellPoints(lineId, npts, pts);
lineEndPts[0] = pts[0];
lineEndPts[1] = pts[npts-1];
// Do both ends match?
if (endPts[endIdx] == lineEndPts[endIdx])
{
completePoly = (endPts[1-endIdx] == lineEndPts[1-endIdx]);
}
else
{
completePoly = (endPts[1-endIdx] == lineEndPts[endIdx]);
}
if (endIdx == 0)
{
poly.insert(poly.end(), &pts[1], &pts[npts-completePoly]);
}
else
{
poly.insert(poly.begin(), &pts[completePoly], &pts[npts-1]);
}
if (endPts[endIdx] != lineEndPts[endIdx])
{
// reverse the ids in the added line
vtkCCSPoly::iterator pit = poly.end();
vtkIdType *ptsIt = pts + completePoly;
vtkIdType *ptsEnd = pts + npts-1;
if (endIdx == 1)
{
pit = poly.begin() + npts-1 - completePoly;
ptsIt = pts + 1;
ptsEnd = pts + npts - completePoly;
}
while (ptsIt != ptsEnd)
{
*(--pit) = *(ptsIt++);
}
}
usedLines.set(lineId-firstLine, 1);
remainingLines--;
noLinesMatch = 0;
}
}
}
// Check for incomplete polygons
if (noLinesMatch)
{
incompletePolys.push_back(polyId);
}
}
}
// ---------------------------------------------------
// Join polys that have loose ends, as indicated by incompletePolys.
// Any polys created will have a normal opposite to the supplied normal,
// and any new edges that are created will be on the hull of the point set.
// Shorter edges will be preferred over long edges.
void vtkCCSJoinLooseEnds(
std::vector<vtkCCSPoly> &polys, std::vector<size_t> &incompletePolys,
vtkPoints *points, const double normal[3])
{
// Relative tolerance for checking whether an edge is on the hull
const double tol = VTK_CCS_POLYGON_TOLERANCE;
// A list of polys to remove when everything is done
std::vector<size_t> removePolys;
size_t n;
while ( (n = incompletePolys.size()) )
{
vtkCCSPoly &poly1 = polys[incompletePolys[n-1]];
vtkIdType pt1 = poly1[poly1.size()-1];
double p1[3], p2[3];
points->GetPoint(pt1, p1);
double dMin = VTK_DOUBLE_MAX;
size_t iMin = 0;
for (size_t i = 0; i < n; i++)
{
vtkCCSPoly &poly2 = polys[incompletePolys[i]];
vtkIdType pt2 = poly2[0];
points->GetPoint(pt2, p2);
// The next few steps verify that edge [p1, p2] is on the hull
double v[3];
v[0] = p2[0] - p1[0]; v[1] = p2[1] - p1[1]; v[2] = p2[2] - p1[2];
double d = vtkMath::Norm(v);
if (d != 0)
{
v[0] /= d; v[1] /= d; v[2] /= d;
}
// Compute the midpoint of the edge
double pm[3];
pm[0] = 0.5*(p1[0] + p2[0]);
pm[1] = 0.5*(p1[1] + p2[1]);
pm[2] = 0.5*(p1[2] + p2[2]);
// Create a plane equation
double pc[4];
vtkMath::Cross(normal, v, pc);
pc[3] = -vtkMath::Dot(pc, pm);
// Check that all points are inside the plane. If they aren't, then
// the edge is not on the hull of the pointset.
int badPoint = 0;
size_t m = polys.size();
for (size_t j = 0; j < m && !badPoint; j++)
{
vtkCCSPoly &poly = polys[j];
size_t npts = poly.size();
for (size_t k = 0; k < npts; k++)
{
vtkIdType ptId = poly[k];
if (ptId != pt1 && ptId != pt2)
{
double p[3];
points->GetPoint(ptId, p);
double val = p[0]*pc[0] + p[1]*pc[1] + p[2]*pc[2] + pc[3];
double r2 = vtkMath::Distance2BetweenPoints(p, pm);
// Check distance from plane against the tolerance
if (val < 0 && val*val > tol*tol*r2)
{
badPoint = 1;
break;
}
}
}
// If no bad points, then this edge is a candidate
if (!badPoint && d < dMin)
{
dMin = d;
iMin = i;
}
}
}
// If a match was found, append the polys
if (dMin < VTK_DOUBLE_MAX)
{
// Did the poly match with itself?
if (iMin == n-1)
{
// Mark the poly as closed
incompletePolys.pop_back();
}
else
{
size_t id2 = incompletePolys[iMin];
// Combine the polys
poly1.insert(poly1.end(), polys[id2].begin(), polys[id2].end());
// Erase the second poly
removePolys.push_back(id2);
incompletePolys.erase(incompletePolys.begin() + iMin);
}
}
else
{
// If no match, erase this poly from consideration
removePolys.push_back(incompletePolys[n-1]);
incompletePolys.pop_back();
}
}
// Remove polys that couldn't be completed
std::sort(removePolys.begin(), removePolys.end());
size_t i = removePolys.size();
while (i > 0)
{
// Remove items in reverse order
polys.erase(polys.begin() + removePolys[--i]);
}
// Clear the incompletePolys vector, it's indices are no longer valid
incompletePolys.clear();
}
// ---------------------------------------------------
// Check for self-intersection. Split the figure-eights.
// This assumes that all intersections occur at existing
// vertices, i.e. no new vertices will be created. Returns
// the number of splits made.
int vtkCCSSplitAtPinchPoints(
std::vector<vtkCCSPoly> &polys, vtkPoints *points,
std::vector<vtkCCSPolyGroup> &polyGroups,
std::vector<vtkCCSPolyEdges> &polyEdges,
const double normal[3], bool oriented)
{
vtkPoints *tryPoints = vtkPoints::New();
tryPoints->SetDataTypeToDouble();
vtkIncrementalOctreePointLocator *locator =
vtkIncrementalOctreePointLocator::New();
int splitCount = 0;
for (size_t i = 0; i < polys.size(); i++)
{
vtkCCSPoly &poly = polys[i];
size_t n = poly.size();
double bounds[6];
double tol = VTK_CCS_POLYGON_TOLERANCE;
tol *= sqrt(vtkCCSPolygonBounds(poly, points, bounds));
if (tol == 0)
{
continue;
}
tryPoints->Initialize();
locator->SetTolerance(tol);
locator->InitPointInsertion(tryPoints, bounds);
int foundMatch = 0;
size_t idx1 = 0;
size_t idx2 = 0;
int unique = 0;
for (idx2 = 0; idx2 < n; idx2++)
{
double point[3];
vtkIdType firstId = poly[idx2];
points->GetPoint(firstId, point);
vtkIdType vertIdx = 0;
if (!locator->InsertUniquePoint(point, vertIdx))
{
// Need vertIdx to match poly indices, so force point insertion
locator->InsertNextPoint(point);
// Do the points have different pointIds?
idx1 = static_cast<size_t>(vertIdx);
unique = (poly[idx2] != poly[idx1]);
if ((idx2 > idx1 + 2 - unique) && (n + idx1 > idx2 + 2 - unique))
{
if (oriented)
{
// Make sure that splitting this poly won't create a hole poly
double p1[3], p2[3], p3[3];
size_t prevIdx = n + idx1 - 1;
size_t midIdx = idx1 + 1;
size_t nextIdx = idx2 + 1;
if (prevIdx >= n) { prevIdx -= n; }
if (midIdx >= n) { midIdx -= n; }
if (nextIdx >= n) { nextIdx -= n; }
points->GetPoint(poly[prevIdx], p1);
points->GetPoint(poly[midIdx], p2);
points->GetPoint(poly[nextIdx], p3);
if (vtkCCSVectorProgression(point, p1, p2, p3, normal) > 0)
{
foundMatch = 1;
break;
}
}
else
{
foundMatch = 1;
break;
}
}
}
}
if (foundMatch)
{
splitCount++;
// Split off a new poly
size_t m = idx2 - idx1;
vtkCCSPoly &oldPoly = polys[i];
vtkCCSPolyEdges &oldEdges = polyEdges[i];
vtkCCSPoly newPoly1(m + unique);
vtkCCSPolyEdges newEdges1(m + unique);
vtkCCSPoly newPoly2(n - m + unique);
vtkCCSPolyEdges newEdges2(n - m + unique);
// The current poly, which is now intersection-free
for (size_t l = 0; l < m+unique; l++)
{
newPoly1[l] = oldPoly[l+idx1];
newEdges1[l] = oldEdges[l+idx1];
}
if (unique)
{
newEdges1[m] = -1;
}
// The poly that is split off, which might have more intersections
for (size_t j = 0; j < idx1+unique; j++)
{
newPoly2[j] = oldPoly[j];
newEdges2[j] = oldEdges[j];
}
if (unique)
{
newEdges2[idx1] = -1;
}
for (size_t k = idx2; k < n; k++)
{
newPoly2[k - m + unique] = oldPoly[k];
newEdges2[k - m + unique] = oldEdges[k];
}
polys[i] = newPoly1;
polyEdges[i] = newEdges1;
polys.push_back(newPoly2);
polyEdges.push_back(newEdges2);
// Unless polygroup was clear (because poly was reversed),
// make a group with one entry for the new poly
polyGroups.resize(polys.size());
if (polyGroups[i].size())
{
polyGroups[polys.size()-1].push_back(polys.size()-1);
}
}
}
tryPoints->Delete();
locator->Delete();
return splitCount;
}
// ---------------------------------------------------
// Given three vectors p->p1, p->p2, and p->p3, this routine
// checks to see if progressing from p1 to p2 to p3 is a clockwise
// or counterclockwise progression with respect to the normal.
// The return value is -1 for clockwise, +1 for counterclockwise,
// and 0 if any two of the vectors are coincident.
int vtkCCSVectorProgression(
const double p[3], const double p1[3],
const double p2[3], const double p3[3], const double normal[3])
{
double v1[3], v2[3], v3[3];
v1[0] = p1[0] - p[0]; v1[1] = p1[1] - p[1]; v1[2] = p1[2] - p[2];
v2[0] = p2[0] - p[0]; v2[1] = p2[1] - p[1]; v2[2] = p2[2] - p[2];
v3[0] = p3[0] - p[0]; v3[1] = p3[1] - p[1]; v3[2] = p3[2] - p[2];
double w1[3], w2[3];
vtkMath::Cross(v2, v1, w1);
vtkMath::Cross(v2, v3, w2);
double s1 = vtkMath::Dot(w1, normal);
double s2 = vtkMath::Dot(w2, normal);
if (s1 != 0 && s2 != 0)
{
int sb1 = (s1 < 0);
int sb2 = (s2 < 0);
// if sines have different signs
if ( (sb1 ^ sb2) )
{
// return -1 if s2 is -ve
return (1 - 2*sb2);
}
double c1 = vtkMath::Dot(v2, v1);
double l1 = vtkMath::Norm(v1);
double c2 = vtkMath::Dot(v2, v3);
double l2 = vtkMath::Norm(v3);
// ck is the difference of the cosines, flipped in sign if sines are +ve
double ck = (c2*l2 - c1*l1)*(1 - sb1*2);
if (ck != 0)
{
// return the sign of ck
return (1 - 2*(ck < 0));
}
}
return 0;
}
// ---------------------------------------------------
// Simple utility method for computing polygon bounds.
// Returns the sum of the squares of the dimensions.
// Requires a poly with at least one point.
double vtkCCSPolygonBounds(
const vtkCCSPoly &poly, vtkPoints *points, double bounds[6])
{
size_t n = poly.size();
double p[3];
points->GetPoint(poly[0], p);
bounds[0] = bounds[1] = p[0];
bounds[2] = bounds[3] = p[1];
bounds[4] = bounds[5] = p[2];
for (size_t j = 1; j < n; j++)
{
points->GetPoint(poly[j], p);
if (p[0] < bounds[0]) { bounds[0] = p[0]; };
if (p[0] > bounds[1]) { bounds[1] = p[0]; };
if (p[1] < bounds[2]) { bounds[2] = p[1]; };
if (p[1] > bounds[3]) { bounds[3] = p[1]; };
if (p[2] < bounds[4]) { bounds[4] = p[2]; };
if (p[2] > bounds[5]) { bounds[5] = p[2]; };
}
double bx = (bounds[1] - bounds[0]);
double by = (bounds[3] - bounds[2]);
double bz = (bounds[5] - bounds[4]);
return (bx*bx + by*by + bz*bz);
}
// ---------------------------------------------------
// The polygons might have a lot of extra points, i.e. points
// in the middle of the edges. Remove those points, but keep
// the original edges as polylines in the originalEdges array.
// Only original edges with more than two points will be kept.
void vtkCCSFindTrueEdges(
std::vector<vtkCCSPoly> &polys, vtkPoints *points,
std::vector<vtkCCSPolyEdges> &polyEdges, vtkCCSCellArray &originalEdges)
{
// Tolerance^2 for angle to see if line segments are parallel
const double atol2 = (VTK_CCS_POLYGON_TOLERANCE*VTK_CCS_POLYGON_TOLERANCE);
for (size_t polyId = 0; polyId < polys.size(); polyId++)
{
vtkCCSPoly &oldPoly = polys[polyId];
size_t n = oldPoly.size();
polyEdges.push_back(vtkCCSPolyEdges());
// Only useful if poly has more than three sides
if (n < 4)
{
polyEdges[polyId].resize(3);
polyEdges[polyId][0] = -1;
polyEdges[polyId][1] = -1;
polyEdges[polyId][2] = -1;
continue;
}
// While we remove points, m keeps track of how many points are left
size_t m = n;
// Compute bounds for tolerance
double bounds[6];
double tol2 = vtkCCSPolygonBounds(oldPoly, points, bounds)*atol2;
// The new poly
vtkCCSPoly newPoly;
vtkCCSPolyEdges &newEdges = polyEdges[polyId];
vtkIdType cornerPointId = 0;
vtkIdType oldOriginalId = -1;
// Allocate space
newPoly.reserve(n);
newEdges.reserve(n);
// Keep the partial edge from before the first corner is found
std::vector<vtkIdType> partialEdge;
int cellCount = 0;
double p0[3], p1[3], p2[3];
double v1[3], v2[3];
double l1, l2;
points->GetPoint(oldPoly[n-1], p0);
points->GetPoint(oldPoly[0], p1);
v1[0] = p1[0] - p0[0]; v1[1] = p1[1] - p0[1]; v1[2] = p1[2] - p0[2];
l1 = vtkMath::Dot(v1, v1);
for (size_t j = 0; j < n; j++)
{
size_t k = j+1;
if (k >= n) { k -= n; }
points->GetPoint(oldPoly[k], p2);
v2[0] = p2[0] - p1[0]; v2[1] = p2[1] - p1[1]; v2[2] = p2[2] - p1[2];
l2 = vtkMath::Dot(v2, v2);
// Dot product is |v1||v2|cos(theta)
double c = vtkMath::Dot(v1, v2);
// sin^2(theta) = (1 - cos^2(theta))
// and c*c = l1*l2*cos^2(theta)
double s2 = (l1*l2 - c*c);
// In the small angle approximation, sin(theta) == theta, so
// s2/(l1*l2) is the angle that we want to check, but it's not
// a valid check if l1 or l2 is very close to zero.
vtkIdType pointId = oldPoly[j];
// Keep the point if:
// 1) removing it would create a 2-point poly OR
// 2) it's more than "tol" distance from the prev point AND
// 3) the angle is greater than atol:
if (m <= 3 ||
(l1 > tol2 &&
(c < 0 || l1 < tol2 || l2 < tol2 || s2 > l1*l2*atol2)))
{
// Complete the previous edge only if the final point count
// will be greater than two
if (cellCount > 1)
{
if (pointId != oldOriginalId)
{
originalEdges.push_back(pointId);
cellCount++;
}
// Update the number of segments in the edge
size_t countLocation = originalEdges.size() - cellCount - 1;
originalEdges[countLocation] = cellCount;
newEdges.push_back(static_cast<vtkIdType>(countLocation));
}
else if (cellCount == 0)
{
partialEdge.push_back(pointId);
}
else
{
newEdges.push_back(-1);
}
newPoly.push_back(pointId);
// Start a new edge with cornerPointId as a "virtual" point
cornerPointId = pointId;
oldOriginalId = pointId;
cellCount = 1;
// Rotate to the next point
p0[0] = p2[0]; p0[1] = p2[1]; p0[2] = p2[2];
p1[0] = p2[0]; p1[1] = p2[1]; p1[2] = p2[2];
v1[0] = v2[0]; v1[1] = v2[1]; v1[2] = v2[2];
l1 = l2;
}
else
{
if (cellCount > 0 && pointId != oldOriginalId)
{
// First check to see if we have to add cornerPointId
if (cellCount == 1)
{
originalEdges.push_back(1); // new edge
originalEdges.push_back(cornerPointId);
}
// Then add the new point
originalEdges.push_back(pointId);
oldOriginalId = pointId;
cellCount++;
}
else
{
// No corner yet, so save the point
partialEdge.push_back(pointId);
}
// Reduce the count
m--;
// Join the previous two segments, since the point was removed
p1[0] = p2[0]; p1[1] = p2[1]; p1[2] = p2[2];
v1[0] = p2[0] - p0[0]; v1[1] = p2[1] - p0[1]; v1[2] = p2[2] - p0[2];
l1 = vtkMath::Dot(v1, v1);
}
}
// Add the partial edge to the end
size_t partialSize = partialEdge.size();
for (size_t ii = 0; ii < partialSize; ii++)
{
vtkIdType pointId = partialEdge[ii];
if (pointId != oldOriginalId)
{
if (cellCount == 1)
{
originalEdges.push_back(1); // new edge
originalEdges.push_back(cornerPointId);
}
originalEdges.push_back(pointId);
oldOriginalId = pointId;
cellCount++;
}
}
// Finalize
if (cellCount > 1)
{
// Update the number of segments in the edge
size_t countLocation = originalEdges.size() - cellCount - 1;
originalEdges[countLocation] = cellCount;
newEdges.push_back(static_cast<vtkIdType>(countLocation));
}
polys[polyId] = newPoly;
}
}
// ---------------------------------------------------
// Reverse a cleaned-up polygon along with the info about
// all of its original vertices
void vtkCCSReversePoly(
vtkCCSPoly &poly, vtkCCSPolyEdges &edges, vtkCCSCellArray &originalEdges)
{
std::reverse(poly.begin()+1, poly.end());
std::reverse(edges.begin(), edges.end());
for (size_t i = 0; i < edges.size(); i++)
{
if (edges[i] >= 0)
{
vtkIdType *pts = &originalEdges[edges[i]];
vtkIdType npts = *pts++;
std::reverse(pts, pts+npts);
}
}
}
// ---------------------------------------------------
// Insert a triangle, and subdivide that triangle if one of
// its edges originally had more than two points before
// vtkCCSFindTrueEdges was called.
void vtkCCSInsertTriangle(
vtkCellArray *polys, const vtkCCSPoly &poly, const size_t trids[3],
const vtkCCSPolyEdges &polyEdges, const vtkCCSCellArray &originalEdges)
{
static const size_t nextVert[3] = { 1, 2, 0 };
// To store how many of originalEdges match
int edgeCount = 0;
int edgeLocs[3];
edgeLocs[0] = -1;
edgeLocs[1] = -1;
edgeLocs[2] = -1;
// Check for original edge matches
for (int vert = 0; vert < 3; vert++)
{
size_t currId = trids[vert];
vtkIdType edgeLoc = polyEdges[currId];
if (edgeLoc >= 0)
{
size_t nextId = currId+1;
if (nextId == poly.size()) { nextId = 0; }
// Is the triangle edge a polygon edge?
if (nextId == trids[nextVert[vert]])
{
edgeLocs[vert] = edgeLoc;
edgeCount++;
}
}
}
if (edgeCount == 0)
{
// No special edge handling, so just do one triangle
polys->InsertNextCell(3);
polys->InsertCellPoint(poly[trids[0]]);
polys->InsertCellPoint(poly[trids[1]]);
polys->InsertCellPoint(poly[trids[2]]);
}
else
{
// Make triangle fans for edges with extra points
vtkIdType edgePtIds[4];
edgePtIds[0] = poly[trids[0]];
edgePtIds[1] = poly[trids[1]];
edgePtIds[2] = poly[trids[2]];
edgePtIds[3] = poly[trids[0]];
const vtkIdType *edgePts[3];
edgePts[0] = &edgePtIds[0];
edgePts[1] = &edgePtIds[1];
edgePts[2] = &edgePtIds[2];
vtkIdType edgeNPts[3];
edgeNPts[0] = 2;
edgeNPts[1] = 2;
edgeNPts[2] = 2;
// Find out which edge has the most extra points
vtkIdType maxPoints = 0;
int currSide = 0;
for (int i = 0; i < 3; i++)
{
if (edgeLocs[i] >= 0)
{
const vtkIdType *pts = &originalEdges[edgeLocs[i]];
vtkIdType npts = *pts++;
assert(edgePts[i][0] == pts[0]);
assert(edgePts[i][1] == pts[npts-1]);
if (npts > maxPoints)
{
maxPoints = npts;
currSide = i;
}
edgeNPts[i] = npts;
edgePts[i] = pts;
}
}
// Find the edges before/after the edge with most points
int prevSide = (currSide+2)%3;
int nextSide = (currSide+1)%3;
// If other edges have only 2 points, nothing to do with them
int prevNeeded = (edgeNPts[prevSide] > 2);
int nextNeeded = (edgeNPts[nextSide] > 2);
// The tail is the common point in the triangle fan
vtkIdType tailPtIds[3];
tailPtIds[prevSide] = edgePts[currSide][1];
tailPtIds[currSide] = edgePts[prevSide][0];
tailPtIds[nextSide] = edgePts[currSide][edgeNPts[currSide]-2];
// Go through the sides and make the fans
for (int side = 0; side < 3; side++)
{
if ((side != prevSide || prevNeeded) &&
(side != nextSide || nextNeeded))
{
vtkIdType m = 0;
vtkIdType n = edgeNPts[side]-1;
if (side == currSide)
{
m += prevNeeded;
n -= nextNeeded;
}
for (int k = m; k < n; k++)
{
polys->InsertNextCell(3);
polys->InsertCellPoint(edgePts[side][k]);
polys->InsertCellPoint(edgePts[side][k+1]);
polys->InsertCellPoint(tailPtIds[side]);
}
}
}
}
}
// ---------------------------------------------------
// Check the sense of the polygon against the given normal. Returns
// zero if the normal is zero.
int vtkCCSCheckPolygonSense(
vtkCCSPoly &poly, vtkPoints *points, const double normal[3],
bool &sense)
{
// Compute the normal
double pnormal[3], p0[3], p1[3], p2[3], v1[3], v2[3], v[3];
pnormal[0] = 0.0; pnormal[1] = 0.0; pnormal[2] = 0.0;
points->GetPoint(poly[0], p0);
points->GetPoint(poly[1], p1);
v1[0] = p1[0] - p0[0]; v1[1] = p1[1] - p0[1]; v1[2] = p1[2] - p0[2];
size_t n = poly.size();
for (size_t jj = 2; jj < n; jj++)
{
points->GetPoint(poly[jj], p2);
v2[0] = p2[0] - p0[0]; v2[1] = p2[1] - p0[1]; v2[2] = p2[2] - p0[2];
vtkMath::Cross(v1, v2, v);
pnormal[0] += v[0]; pnormal[1] += v[1]; pnormal[2] += v[2];
p1[0] = p2[0]; p1[1] = p2[1]; p1[2] = p2[2];
v1[0] = v2[0]; v1[1] = v2[1]; v1[2] = v2[2];
}
// Check the normal
double d = vtkMath::Dot(pnormal, normal);
sense = (d > 0);
return (d != 0);
}
// ---------------------------------------------------
// Check whether innerPoly is inside outerPoly.
// The normal is needed to verify the polygon orientation.
// The values of pp, bounds, and tol2 must be precomputed
// by calling vtkCCSPrepareForPolyInPoly() on outerPoly.
int vtkCCSPolyInPoly(
const vtkCCSPoly &outerPoly, const vtkCCSPoly &innerPoly,
vtkPoints *points, const double normal[3],
const double *pp, const double bounds[6],
double tol2)
{
// Find a vertex of poly "j" that isn't on the edge of poly "i".
// This is necessary or the PointInPolygon might return "true"
// based only on roundoff error.
size_t n = outerPoly.size();
size_t m = innerPoly.size();
for (size_t jj = 0; jj < m; jj++)
{
// Semi-randomize the point order
size_t kk = (jj>>1) + (jj&1)*((m+1)>>1);
double p[3];
points->GetPoint(innerPoly[kk], p);
if (vtkPolygon::PointInPolygon(
p, static_cast<int>(n), const_cast<double *>(pp),
const_cast<double *>(bounds), const_cast<double *>(normal)))
{
int pointOnEdge = 0;
double q1[3], q2[3];
points->GetPoint(outerPoly[n-1], q1);
for (size_t ii = 0; ii < n; ii++)
{
points->GetPoint(outerPoly[ii], q2);
double t, dummy[3];
// This method returns distance squared
if (vtkLine::DistanceToLine(p, q1, q2, t, dummy) < tol2)
{
pointOnEdge = 1;
break;
}
q1[0] = q2[0]; q1[1] = q2[1]; q1[2] = q2[2];
}
if (!pointOnEdge)
{
// Good result, point is in polygon
return 1;
}
}
}
// No matches found
return 0;
}
// ---------------------------------------------------
// Precompute values needed for the PolyInPoly check.
// The values that are returned are as follows:
// pp: an array of the polygon vertices
// bounds: the polygon bounds
// tol2: a tolerance value based on the size of the polygon
// (note: pp must be pre-allocated to the 3*outerPoly.size())
void vtkCCSPrepareForPolyInPoly(
const vtkCCSPoly &outerPoly, vtkPoints *points,
double *pp, double bounds[6], double &tol2)
{
size_t n = outerPoly.size();
if (n == 0)
{
tol2=0.0; // to avoid false positive warning about uninitialized value.
return;
}
// Pull out the points
for (size_t k = 0; k < n; k++)
{
double *p = &pp[3*k];
points->GetPoint(outerPoly[k], p);
}
// Find the bounding box and tolerance for the polygon
tol2 = (vtkCCSPolygonBounds(outerPoly, points, bounds)*
(VTK_CCS_POLYGON_TOLERANCE * VTK_CCS_POLYGON_TOLERANCE));
}
// ---------------------------------------------------
// Check for polygons within polygons. Group the polygons
// if they are within each other. Reverse the sense of
// the interior "hole" polygons. A hole within a hole
// will be reversed twice and will become its own group.
void vtkCCSMakeHoleyPolys(
std::vector<vtkCCSPoly> &newPolys, vtkPoints *points,
std::vector<vtkCCSPolyGroup> &polyGroups,
std::vector<vtkCCSPolyEdges> &polyEdges,
vtkCCSCellArray &originalEdges,
const double normal[3], bool oriented)
{
size_t numNewPolys = newPolys.size();
if (numNewPolys <= 1)
{
return;
}
// Use bit arrays to keep track of inner polys
vtkCCSBitArray polyReversed;
vtkCCSBitArray innerPolys;
// GroupCount is an array only needed for unoriented polys
size_t *groupCount = 0;
if (!oriented)
{
groupCount = new size_t[numNewPolys];
std::fill(groupCount, groupCount+numNewPolys, 0);
}
// Find the maximum poly size
size_t nmax = 1;
for (size_t kk = 0; kk < numNewPolys; kk++)
{
size_t n = newPolys[kk].size();
if (n > nmax) { nmax = n; }
}
// These are some values needed for poly-in-poly checks
double *pp = new double[3*nmax];
double bounds[6];
double tol2;
// Go through all polys
for (size_t i = 0; i < numNewPolys; i++)
{
size_t n = newPolys[i].size();
if (n < 3) { continue; }
// Check if poly is reversed
bool sense = 0;
if (vtkCCSCheckPolygonSense(newPolys[i], points, normal, sense))
{
polyReversed.set(i, !sense);
}
// Precompute some values needed for poly-in-poly checks
vtkCCSPrepareForPolyInPoly(newPolys[i], points, pp, bounds, tol2);
// Look for polygons inside of this one
for (size_t j = 0; j < numNewPolys; j++)
{
if (j != i && newPolys[j].size() >= 3)
{
// Make sure polygon i is not in polygon j
vtkCCSPolyGroup &pg = polyGroups[j];
if (std::find(pg.begin(), pg.end(), i) == pg.end())
{
if (vtkCCSPolyInPoly(newPolys[i], newPolys[j], points,
normal, pp, bounds, tol2))
{
// Add to group
polyGroups[i].push_back(j);
if (groupCount) { groupCount[j] += 1; }
}
}
}
}
}
delete [] pp;
if (!oriented)
{
// build a stack of polys that aren't inside other polys
std::vector<size_t> outerPolyStack;
for (size_t ll = 0; ll < numNewPolys; ll++)
{
if (groupCount[ll] == 0) { outerPolyStack.push_back(ll); }
}
while (outerPolyStack.size())
{
size_t j = outerPolyStack.back();
outerPolyStack.pop_back();
if (polyReversed.get(j))
{
vtkCCSReversePoly(newPolys[j], polyEdges[j], originalEdges);
polyReversed.set(j, 0);
}
if (polyGroups[j].size() > 1)
{
// Convert the group into a bit array, to make manipulation easier
innerPolys.clear();
for (size_t k = 1; k < polyGroups[j].size(); k++)
{
size_t jj = polyGroups[j][k];
if (groupCount[jj] > 1)
{
if ((groupCount[jj] -= 2) == 0)
{
outerPolyStack.push_back(jj);
}
}
else
{
innerPolys.set(jj, 1);
polyGroups[jj].clear();
if (!polyReversed.get(jj))
{
vtkCCSReversePoly(newPolys[jj], polyEdges[jj], originalEdges);
polyReversed.set(jj, 0);
}
}
}
// Use the bit array to recreate the polyGroup
polyGroups[j].clear();
polyGroups[j].push_back(j);
for (size_t jj = 0; jj < numNewPolys; jj++)
{
if (innerPolys.get(jj) != 0)
{
polyGroups[j].push_back(jj);
}
}
}
}
}
else // oriented
{
for (size_t j = 0; j < numNewPolys; j++)
{
// Remove the groups for reversed polys
if (polyReversed.get(j))
{
polyGroups[j].clear();
}
// Polys inside the interior polys have their own groups, so remove
// them from this group
else if (polyGroups[j].size() > 1)
{
// Convert the group into a bit array, to make manipulation easier
innerPolys.clear();
for (size_t k = 1; k < polyGroups[j].size(); k++)
{
innerPolys.set(polyGroups[j][k], 1);
}
// Look for non-reversed polys inside this one
for (size_t kk = 1; kk < polyGroups[j].size(); kk++)
{
// jj is the index of the inner poly
size_t jj = polyGroups[j][kk];
// If inner poly is not reversed then
if (!polyReversed.get(jj))
{
// Remove that poly and all polys inside of it from the group
for (size_t ii = 0; ii < polyGroups[jj].size(); ii++)
{
innerPolys.set(polyGroups[jj][ii], 0);
}
}
}
// Use the bit array to recreate the polyGroup
polyGroups[j].clear();
polyGroups[j].push_back(j);
for (size_t jj = 0; jj < numNewPolys; jj++)
{
if (innerPolys.get(jj) != 0)
{
polyGroups[j].push_back(jj);
}
}
}
}
}
delete [] groupCount;
}
// ---------------------------------------------------
// Check line segment with point Ids (i, j) to make sure that it
// doesn't cut through the edges of any polys in the group.
// Return value of zero means check failed and the cut is not
// usable.
int vtkCCSCheckCut(
const std::vector<vtkCCSPoly> &polys, vtkPoints *points,
const double normal[3], const vtkCCSPolyGroup &polyGroup,
size_t outerPolyId, size_t innerPolyId,
vtkIdType outerIdx, vtkIdType innerIdx)
{
vtkIdType ptId1 = polys[outerPolyId][outerIdx];
vtkIdType ptId2 = polys[innerPolyId][innerIdx];
const double tol = VTK_CCS_POLYGON_TOLERANCE;
double p1[3], p2[3];
points->GetPoint(ptId1, p1);
points->GetPoint(ptId2, p2);
double w[3];
w[0] = p2[0] - p1[0]; w[1] = p2[1] - p1[1]; w[2] = p2[2] - p1[2];
double l = vtkMath::Normalize(w);
// Cuts between coincident points are good
if (l == 0)
{
return 1;
}
// Define a tolerance with units of distance squared
double tol2 = l*l*tol*tol;
// Check the sense of the cut: it must be pointing "in" for both polys.
size_t polyId = outerPolyId;
size_t polyIdx = outerIdx;
double *r = p1;
double *r2 = p2;
for (int ii= 0; ii < 2; ii++)
{
const vtkCCSPoly &poly = polys[polyId];
size_t n = poly.size();
size_t prevIdx = n - polyIdx - 1;
size_t nextIdx = polyIdx + 1;
if (prevIdx >= n) { prevIdx -= n; }
if (nextIdx >= n) { nextIdx -= n; }
double r1[3], r3[3];
points->GetPoint(poly[prevIdx], r1);
points->GetPoint(poly[nextIdx], r3);
if (vtkCCSVectorProgression(r, r1, r2, r3, normal) > 0)
{
return 0;
}
polyId = innerPolyId;
polyIdx = innerIdx;
r = p2;
r2 = p1;
}
// Check for intersections of the cut with polygon edges.
// First, create a cut plane that divides space at the cut line.
double pc[4];
vtkMath::Cross(normal, w, pc);
pc[3] = -vtkMath::Dot(pc, p1);
for (size_t i = 0; i < polyGroup.size(); i++)
{
const vtkCCSPoly &poly = polys[polyGroup[i]];
size_t n = poly.size();
double q1[3];
vtkIdType qtId1 = poly[n-1];
points->GetPoint(qtId1, q1);
double v1 = pc[0]*q1[0] + pc[1]*q1[1] + pc[2]*q1[2] + pc[3];
int c1 = (v1 > 0);
for (size_t j = 0; j < n; j++)
{
double q2[3];
vtkIdType qtId2 = poly[j];
points->GetPoint(qtId2, q2);
double v2 = pc[0]*q2[0] + pc[1]*q2[1] + pc[2]*q2[2] + pc[3];
int c2 = (v2 > 0);
// If lines share an endpoint, they can't intersect,
// so don't bother with the check.
if (ptId1 != qtId1 && ptId1 != qtId2 &&
ptId2 != qtId1 && ptId2 != qtId2)
{
// Check for intersection
if ( (c1 ^ c2) || v1*v1 < tol2 || v2*v2 < tol2)
{
w[0] = q2[0] - q1[0]; w[1] = q2[1] - q1[1]; w[2] = q2[2] - q1[2];
if (vtkMath::Dot(w, w) > 0)
{
double qc[4];
vtkMath::Cross(w, normal, qc);
qc[3] = -vtkMath::Dot(qc, q1);
double u1 = qc[0]*p1[0] + qc[1]*p1[1] + qc[2]*p1[2] + qc[3];
double u2 = qc[0]*p2[0] + qc[1]*p2[1] + qc[2]*p2[2] + qc[3];
int d1 = (u1 > 0);
int d2 = (u2 > 0);
if ( (d1 ^ d2) )
{
// One final check to make sure endpoints aren't coincident
double *p = p1;
double *q = q1;
if (v2*v2 < v1*v1) { p = p2; }
if (u2*u2 < u1*u1) { q = q2; }
if (vtkMath::Distance2BetweenPoints(p, q) > tol2)
{
return 0;
}
}
}
}
}
qtId1 = qtId2;
q1[0] = q2[0]; q1[1] = q2[1]; q1[2] = q2[2];
v1 = v2;
c1 = c2;
}
}
return 1;
}
// ---------------------------------------------------
// Check the quality of a cut between an outer and inner polygon.
// An ideal cut is one that forms a 90 degree angle with each
// line segment that it joins to. Smaller values indicate a
// higher quality cut.
double vtkCCSCutQuality(
const vtkCCSPoly &outerPoly, const vtkCCSPoly &innerPoly,
size_t i, size_t j, vtkPoints *points)
{
size_t n = outerPoly.size();
size_t m = innerPoly.size();
size_t a = ((i > 0) ? i-1 : n-1);
size_t b = ((i < n-1) ? i+1 : 0);
size_t c = ((j > 0) ? j-1 : m-1);
size_t d = ((j < m-1) ? j+1 : 0);
double p0[3], p1[3], p2[3];
points->GetPoint(outerPoly[i], p1);
points->GetPoint(innerPoly[j], p2);
double v1[3], v2[3];
v1[0] = p2[0] - p1[0]; v1[1] = p2[1] - p1[1]; v1[2] = p2[2] - p1[2];
double l1 = vtkMath::Dot(v1, v1);
double l2;
double qmax = 0;
double q;
points->GetPoint(outerPoly[a], p0);
v2[0] = p0[0] - p1[0]; v2[1] = p0[1] - p1[1]; v2[2] = p0[2] - p1[2];
l2 = vtkMath::Dot(v2, v2);
if (l2 > 0)
{
q = vtkMath::Dot(v1, v2);
q *= q/l2;
if (q > qmax) { qmax = q; }
}
points->GetPoint(outerPoly[b], p0);
v2[0] = p0[0] - p1[0]; v2[1] = p0[1] - p1[1]; v2[2] = p0[2] - p1[2];
l2 = vtkMath::Dot(v2, v2);
if (l2 > 0)
{
q = vtkMath::Dot(v1, v2);
q *= q/l2;
if (q > qmax) { qmax = q; }
}
points->GetPoint(innerPoly[c], p0);
v2[0] = p2[0] - p0[0]; v2[1] = p2[1] - p0[1]; v2[2] = p2[2] - p0[2];
l2 = vtkMath::Dot(v2, v2);
if (l2 > 0)
{
q = vtkMath::Dot(v1, v2);
q *= q/l2;
if (q > qmax) { qmax = q; }
}
points->GetPoint(innerPoly[d], p0);
v2[0] = p2[0] - p0[0]; v2[1] = p2[1] - p0[1]; v2[2] = p2[2] - p0[2];
l2 = vtkMath::Dot(v2, v2);
if (l2 > 0)
{
q = vtkMath::Dot(v1, v2);
q *= q/l2;
if (q > qmax) { qmax = q; }
}
if (l1 > 0)
{
return qmax/l1; // also l1 + qmax, incorporates distance;
}
return VTK_DOUBLE_MAX;
}
// ---------------------------------------------------
// Find the two sharpest verts on an inner (i.e. inside-out) poly.
void vtkCCSFindSharpestVerts(
const vtkCCSPoly &poly, vtkPoints *points, const double normal[3],
size_t verts[2])
{
double p1[3], p2[3];
double v1[3], v2[3], v[3];
double l1, l2;
double minVal[2];
minVal[0] = 0;
minVal[1] = 0;
verts[0] = 0;
verts[1] = 0;
size_t n = poly.size();
points->GetPoint(poly[n-1], p2);
points->GetPoint(poly[0], p1);
v1[0] = p1[0] - p2[0]; v1[1] = p1[1] - p2[1]; v1[2] = p1[2] - p2[2];
l1 = sqrt(vtkMath::Dot(v1, v1));
for (size_t j = 0; j < n; j++)
{
size_t k = j+1;
if (k == n) { k = 0; }
points->GetPoint(poly[k], p2);
v2[0] = p2[0] - p1[0]; v2[1] = p2[1] - p1[1]; v2[2] = p2[2] - p1[2];
l2 = sqrt(vtkMath::Dot(v2, v2));
vtkMath::Cross(v1, v2, v);
double b = vtkMath::Dot(v, normal);
if (b < 0 && l1*l2 > 0)
{
// Dot product is |v1||v2|cos(theta), range [-1, +1]
double val = vtkMath::Dot(v1, v2)/(l1*l2);
if (val < minVal[0])
{
minVal[1] = minVal[0];
minVal[0] = val;
verts[1] = verts[0];
verts[0] = j;
}
}
// Rotate to the next point
p1[0] = p2[0]; p1[1] = p2[1]; p1[2] = p2[2];
v1[0] = v2[0]; v1[1] = v2[1]; v1[2] = v2[2];
l1 = l2;
}
}
// ---------------------------------------------------
// Find two valid cuts between outerPoly and innerPoly.
// Used by vtkCCSCutHoleyPolys.
int vtkCCSFindCuts(
const std::vector<vtkCCSPoly> &polys,
const vtkCCSPolyGroup &polyGroup, size_t outerPolyId, size_t innerPolyId,
vtkPoints *points, const double normal[3], size_t cuts[2][2],
size_t exhaustive)
{
const vtkCCSPoly &outerPoly = polys[outerPolyId];
const vtkCCSPoly &innerPoly = polys[innerPolyId];
size_t innerSize = innerPoly.size();
// Find the two sharpest points on the inner poly
size_t verts[2];
vtkCCSFindSharpestVerts(innerPoly, points, normal, verts);
// A list of cut locations according to quality
typedef std::pair<double, size_t> vtkCCSCutLoc;
std::vector<vtkCCSCutLoc> cutlist(outerPoly.size());
// Search for potential cuts (need to find two cuts)
int cutId = 0;
cuts[0][0] = cuts[0][1] = 0;
cuts[1][0] = cuts[1][1] = 0;
for (cutId = 0; cutId < 2; cutId++)
{
int foundCut = 0;
size_t count = (exhaustive ? innerSize : 3);
for (size_t i = 0; i < count && !foundCut; i++)
{
// Semi-randomize the search order
size_t j = (i>>1) + (i&1)*((innerSize+1)>>1);
// Start at the best first point
j = (j + verts[cutId])%innerSize;
for (size_t kk = 0; kk < outerPoly.size(); kk++)
{
double q = vtkCCSCutQuality(outerPoly, innerPoly, kk, j, points);
cutlist[kk].first = q;
cutlist[kk].second = kk;
}
std::sort(cutlist.begin(), cutlist.end());
for (size_t lid = 0; lid < cutlist.size(); lid++)
{
size_t k = cutlist[lid].second;
// If this is the second cut, do extra checks
if (cutId > 0)
{
// Make sure cuts don't share an endpoint
if (j == cuts[0][1] || k == cuts[0][0])
{
continue;
}
// Make sure cuts don't intersect
double p1[3], p2[3];
points->GetPoint(outerPoly[cuts[0][0]], p1);
points->GetPoint(innerPoly[cuts[0][1]], p2);
double q1[3], q2[3];
points->GetPoint(outerPoly[k], q1);
points->GetPoint(innerPoly[j], q2);
double u, v;
if (vtkLine::Intersection(p1, p2, q1, q2, u, v) == 2)
{
continue;
}
}
// This check is done for both cuts
if (vtkCCSCheckCut(polys, points, normal, polyGroup,
outerPolyId, innerPolyId, k, j))
{
cuts[cutId][0] = k;
cuts[cutId][1] = j;
foundCut = 1;
break;
}
}
}
if (!foundCut)
{
return 0;
}
}
return 1;
}
// ---------------------------------------------------
// Helper for vtkCCSCutHoleyPolys. Change a polygon and a hole
// into two separate polygons by making two cuts between them.
void vtkCCSMakeCuts(
std::vector<vtkCCSPoly> &polys,
std::vector<vtkCCSPolyEdges> &polyEdges,
size_t outerPolyId, size_t innerPolyId,
vtkPoints *points, const size_t cuts[2][2])
{
double q[3], r[3];
for (size_t bb = 0; bb < 2; bb++)
{
vtkIdType ptId1 = polys[outerPolyId][cuts[bb][0]];
vtkIdType ptId2 = polys[innerPolyId][cuts[bb][1]];
points->GetPoint(ptId1, q);
points->GetPoint(ptId2, r);
}
vtkCCSPoly &outerPoly = polys[outerPolyId];
vtkCCSPoly &innerPoly = polys[innerPolyId];
vtkCCSPolyEdges &outerEdges = polyEdges[outerPolyId];
vtkCCSPolyEdges &innerEdges = polyEdges[innerPolyId];
// Generate new polys from the cuts
size_t n = outerPoly.size();
size_t m = innerPoly.size();
size_t idx;
// Generate poly1
size_t n1 = n*(cuts[1][0] < cuts[0][0]) + cuts[1][0] - cuts[0][0] + 1;
size_t n2 = n1 + m*(cuts[0][1] < cuts[1][1]) + cuts[0][1] - cuts[1][1] + 1;
vtkCCSPoly poly1(n2);
vtkCCSPolyEdges edges1(n2);
idx = cuts[0][0];
for (size_t i1 = 0; i1 < n1; i1++)
{
size_t k = idx++;
poly1[i1] = outerPoly[k];
edges1[i1] = outerEdges[k];
idx *= (idx != n);
}
edges1[n1-1] = -1;
idx = cuts[1][1];
for (size_t i2 = n1; i2 < n2; i2++)
{
size_t k = idx++;
poly1[i2] = innerPoly[k];
edges1[i2] = innerEdges[k];
idx *= (idx != m);
}
edges1[n2-1] = -1;
// Generate poly2
size_t m1 = n*(cuts[0][0] < cuts[1][0]) + cuts[0][0] - cuts[1][0] + 1;
size_t m2 = m1 + m*(cuts[1][1] < cuts[0][1]) + cuts[1][1] - cuts[0][1] + 1;
vtkCCSPoly poly2(m2);
vtkCCSPolyEdges edges2(m2);
idx = cuts[1][0];
for (size_t j1 = 0; j1 < m1; j1++)
{
size_t k = idx++;
poly2[j1] = outerPoly[k];
edges2[j1] = outerEdges[k];
idx *= (idx != n);
}
edges2[m1-1] = -1;
idx = cuts[0][1];
for (size_t j2 = m1; j2 < m2; j2++)
{
size_t k = idx++;
poly2[j2] = innerPoly[k];
edges2[j2] = innerEdges[k];
idx *= (idx != m);
}
edges2[m2-1] = -1;
// Replace outerPoly and innerPoly with these new polys
polys[outerPolyId] = poly1;
polys[innerPolyId] = poly2;
polyEdges[outerPolyId] = edges1;
polyEdges[innerPolyId] = edges2;
}
// ---------------------------------------------------
// After the holes have been identified, make cuts between the
// outer poly and each hole. Make two cuts per hole. The only
// strict requirement is that the cut must not intersect any
// edges, but it's best to make sure that no really sharp angles
// are created.
int vtkCCSCutHoleyPolys(
std::vector<vtkCCSPoly> &polys, vtkPoints *points,
std::vector<vtkCCSPolyGroup> &polyGroups,
std::vector<vtkCCSPolyEdges> &polyEdges,
const double normal[3])
{
int cutFailure = 0;
// Go through all groups and cut out the first inner poly that is
// found. Every time an inner poly is cut out, the groupId counter
// is reset because a cutting a poly creates a new group.
size_t groupId = 0;
while (groupId < polyGroups.size())
{
vtkCCSPolyGroup &polyGroup = polyGroups[groupId];
// Only need to make a cut if the group size is greater than 1
if (polyGroup.size() > 1)
{
// The first member of the group is the outer poly
size_t outerPolyId = polyGroup[0];
// The second member of the group is the first inner poly
size_t innerPolyId = polyGroup[1];
// Sort the group by size, do largest holes first
std::vector<std::pair<size_t, size_t> >
innerBySize(polyGroup.size());
for (size_t i = 1; i < polyGroup.size(); i++)
{
innerBySize[i].first = polys[polyGroup[i]].size();
innerBySize[i].second = i;
}
std::sort(innerBySize.begin()+1, innerBySize.end());
std::reverse(innerBySize.begin()+1, innerBySize.end());
// Need to check all inner polys in sequence, until one succeeds.
// Do a quick search first, then do an exhaustive search.
int madeCut = 0;
size_t inner = 0;
for (int exhaustive = 0; exhaustive < 2 && !madeCut; exhaustive++)
{
for (size_t j = 1; j < polyGroup.size(); j++)
{
inner = innerBySize[j].second;
innerPolyId = polyGroup[inner];
size_t cuts[2][2];
if (vtkCCSFindCuts(polys, polyGroup, outerPolyId, innerPolyId,
points, normal, cuts, exhaustive))
{
vtkCCSMakeCuts(polys, polyEdges, outerPolyId, innerPolyId,
points, cuts);
madeCut = 1;
break;
}
}
}
if (madeCut)
{
// Move successfuly cut innerPolyId into its own group
polyGroup.erase(polyGroup.begin() + inner);
polyGroups[innerPolyId].push_back(innerPolyId);
}
else
{
// Remove all failed inner polys from the group
for (size_t k = 1; k < polyGroup.size(); k++)
{
innerPolyId = polyGroup[k];
polyGroups[innerPolyId].push_back(innerPolyId);
}
polyGroup.resize(1);
cutFailure = 1;
}
// If there are other interior polys in the group, find out whether
// they are in poly1 or poly2
if (polyGroup.size() > 1)
{
vtkCCSPoly &poly1 = polys[outerPolyId];
double *pp = new double[3*poly1.size()];
double bounds[6];
double tol2;
vtkCCSPrepareForPolyInPoly(poly1, points, pp, bounds, tol2);
size_t ii = 1;
while (ii < polyGroup.size())
{
if (vtkCCSPolyInPoly(poly1, polys[polyGroup[ii]],
points, normal, pp, bounds, tol2))
{
// Keep this poly in polyGroup
ii++;
}
else
{
// Move this poly to poly2 group
polyGroups[innerPolyId].push_back(polyGroup[ii]);
polyGroup.erase(polyGroup.begin()+ii);
// Reduce the groupId to ensure that this new group
// will get cut
if (innerPolyId < groupId)
{
groupId = innerPolyId;
}
}
}
delete [] pp;
// Continue without incrementing groupId
continue;
}
}
// Increment to the next group
groupId++;
}
return !cutFailure;
}
} // end anonymous namespace
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
// This is a complex subroutine that takes a collection of lines that
// were formed by cutting a polydata with a plane, and generates
// a face that has those lines as its edges. The lines must form one
// or more closed contours, but they need not be sorted.
//
// Only "numLine" lines starting from "firstLine" are used to create new
// polygons, and the new polygons are appended to "polys". The normal of
// the cut plane must be provided so that polys will be correctly oriented.
// If this is defined, then the outlines of any failed polygons will be
// added to "data". It is only meant as a debugging tool.
//#define VTK_CCS_SHOW_FAILED_POLYS
int vtkContourTriangulator::TriangulateContours(
vtkPolyData *data, vtkIdType firstLine, vtkIdType numLines,
vtkCellArray *polys, const double normal[3])
{
int triangulationFailure = 0;
// If no cut lines were generated, there's nothing to do
if (numLines <= 0)
{
return 0;
}
vtkPoints *points = data->GetPoints();
// Join all the new lines into connected groups, i.e. polygons.
// If we are lucky these will be simple, convex polygons. But
// we can't count on that.
std::vector<vtkCCSPoly> newPolys;
std::vector<size_t> incompletePolys;
// reallocating this would be expensive, so start it big
newPolys.reserve(100);
bool oriented = (normal != 0);
vtkCCSMakePolysFromLines(data, firstLine, firstLine+numLines, oriented,
newPolys, incompletePolys);
// if no normal specified, then compute one from largest contour
double computedNormal[3] = { 0.0, 0.0, 1.0 };
if (normal == 0)
{
double maxnorm2 = 0;
size_t numNewPolys = newPolys.size();
for (size_t i = 0; i < numNewPolys; i++)
{
double n[3];
double norm2 = vtkCCSPolygonNormal(newPolys[i], points, n);
if (norm2 > maxnorm2)
{
maxnorm2 = norm2;
computedNormal[0] = n[0];
computedNormal[1] = n[1];
computedNormal[2] = n[2];
}
}
normal = computedNormal;
}
// Join any loose ends. If the input was a closed surface then there
// will not be any loose ends, so this is provided as a service to users
// who want to clip a non-closed surface.
vtkCCSJoinLooseEnds(newPolys, incompletePolys, points, normal);
// Some points might be in the middle of straight line segments.
// These points can be removed without changing the shape of the
// polys, and removing them makes triangulation more stable.
// Unfortunately removing these points also means that the polys
// will no longer form a watertight cap over the cut.
std::vector<vtkCCSPolyEdges> polyEdges;
polyEdges.reserve(100);
vtkCCSCellArray originalEdges;
originalEdges.reserve(200);
vtkCCSFindTrueEdges(newPolys, points, polyEdges, originalEdges);
// Next we have to check for polygons with holes, i.e. polygons that
// have other polygons inside. Each polygon is "grouped" with the
// polygons that make up its holes.
// Initialize each group to hold just one polygon.
size_t numNewPolys = newPolys.size();
std::vector<vtkCCSPolyGroup> polyGroups(numNewPolys);
for (size_t i = 0; i < numNewPolys; i++)
{
polyGroups[i].push_back(i);
}
// Find out which polys are holes in larger polys. Create a group
// for each poly where the first member of the group is the larger
// poly, and all other members are the holes. The number of polyGroups
// will be the same as the number of polys, and any polys that are
// holes will have a matching empty group.
vtkCCSMakeHoleyPolys(newPolys, points, polyGroups,
polyEdges, originalEdges,
normal, oriented);
// Make cuts to create simple polygons out of the holey polys.
// After this is done, each polyGroup will have exactly 1 polygon,
// and no polys will be holes. This is currently the most computationally
// expensive part of the process.
if (!vtkCCSCutHoleyPolys(newPolys, points, polyGroups, polyEdges, normal))
{
triangulationFailure = 1;
}
// Some polys might be self-intersecting. Split the polys at each
// intersection point.
vtkCCSSplitAtPinchPoints(newPolys, points, polyGroups, polyEdges,
normal, oriented);
// ------ Triangulation code ------
// Go through all polys and triangulate them
for (size_t polyId = 0; polyId < polyGroups.size(); polyId++)
{
// If group is empty, then poly was a hole without a containing poly
if (polyGroups[polyId].size() == 0)
{
continue;
}
if (!vtkCCSTriangulate(newPolys[polyId], points, polyEdges[polyId],
originalEdges, polys, normal))
{
triangulationFailure = 1;
#ifdef VTK_CCS_SHOW_FAILED_POLYS
// Diagnostic code: show the polys as outlines
vtkCellArray *lines = data->GetLines();
vtkCCSPoly &poly = newPolys[polyId];
lines->InsertNextCell(poly.size()+1);
for (size_t jjj = 0; jjj < poly.size(); jjj++)
{
lines->InsertCellPoint(poly[jjj]);
}
lines->InsertCellPoint(poly[0]);
#endif
}
}
return !triangulationFailure;
}
// ---------------------------------------------------
int vtkContourTriangulator::TriangulatePolygon(
vtkIdList *polygon, vtkPoints *points, vtkCellArray *triangles)
{
vtkIdType n = polygon->GetNumberOfIds();
std::vector<vtkCCSPoly> polys(1);
vtkCCSPoly &poly = polys[0];
poly.resize(n);
for (vtkIdType i = 0; i < n; i++)
{
poly[i] = polygon->GetId(i);
}
vtkCCSCellArray originalEdges;
std::vector<vtkCCSPolyEdges> polyEdges;
vtkCCSFindTrueEdges(polys, points, polyEdges, originalEdges);
vtkCCSPolyEdges &edges = polyEdges[0];
int success = 1;
double normal[3];
if (vtkCCSPolygonNormal(poly, points, normal))
{
success = vtkCCSTriangulate(poly, points, edges, originalEdges,
triangles, normal);
}
return success;
}
|