File: vtkDataSetGradientPrecompute.cxx

package info (click to toggle)
vtk7 7.1.1%2Bdfsg1-12
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 125,776 kB
  • sloc: cpp: 1,539,582; ansic: 106,521; python: 78,038; tcl: 47,013; xml: 8,142; yacc: 5,040; java: 4,439; perl: 3,132; lex: 1,926; sh: 1,500; makefile: 122; objc: 83
file content (350 lines) | stat: -rw-r--r-- 11,371 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkDataSetGradientPrecompute.cxx

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

  This software is distributed WITHOUT ANY WARRANTY; without even
  the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
  PURPOSE.  See the above copyright notice for more information.

  =========================================================================*/
// .SECTION Thanks
// This file is part of the generalized Youngs material interface reconstruction algorithm contributed by
// CEA/DIF - Commissariat a l'Energie Atomique, Centre DAM Ile-De-France <br>
// BP12, F-91297 Arpajon, France. <br>
// Implementation by Thierry Carrard (CEA)

#include "vtkDataSetGradientPrecompute.h"

#include "vtkMath.h"
#include "vtkTriangle.h"
#include "vtkInformationVector.h"
#include "vtkInformation.h"
#include "vtkDataSet.h"
#include "vtkDoubleArray.h"
#include "vtkCell.h"
#include "vtkCell3D.h"
#include "vtkTetra.h"
#include "vtkFieldData.h"
#include "vtkCellData.h"
#include "vtkObjectFactory.h"

#define VTK_DATASET_GRADIENT_TETRA_OPTIMIZATION
#define VTK_DATASET_GRADIENT_TRIANGLE_OPTIMIZATION
//#define DEBUG

vtkStandardNewMacro(vtkDataSetGradientPrecompute);

vtkDataSetGradientPrecompute::vtkDataSetGradientPrecompute()
{
}

vtkDataSetGradientPrecompute::~vtkDataSetGradientPrecompute()
{
}

void vtkDataSetGradientPrecompute::PrintSelf(ostream& os, vtkIndent indent)
{
  this->Superclass::PrintSelf(os,indent);
}

#define ADD_VEC(a,b) a[0]+=b[0];a[1]+=b[1];a[2]+=b[2]
#define SCALE_VEC(a,b) a[0]*=b;a[1]*=b;a[2]*=b
#define ZERO_VEC(a) a[0]=0;a[1]=0;a[2]=0
#define MAX_CELL_POINTS 128
#define VTK_CQS_EPSILON 1e-12

static inline void TETRA_CQS_VECTOR( double v0[3], double v1[3], double v2[3], double p[3], double cqs[3] )
{
  double surface = fabs( vtkTriangle::TriangleArea (v0,v1,v2) );

  vtkTriangle::ComputeNormal( v0,v1,v2 , cqs );

  // inverse face normal if not toward opposite vertex
  double edge[3];
  edge[0] = p[0] - v0[0];
  edge[1] = p[1] - v0[1];
  edge[2] = p[2] - v0[2];
  if( vtkMath::Dot(edge,cqs) < 0 )
  {
    cqs[0] = - cqs[0];
    cqs[1] = - cqs[1];
    cqs[2] = - cqs[2];
  }

  SCALE_VEC( cqs , surface / 2.0 );
}

static inline void TRIANGLE_CQS_VECTOR( double v0[3], double v1[3], double p[3], double cqs[3] )
{
  double length = sqrt(vtkMath::Distance2BetweenPoints(v0,v1));
  double a[3], b[3], c[3];
  for(int i=0;i<3;i++)
  {
    a[i] = v1[i] - v0[i];
    b[i] = p[i] - v0[i];
  }
  vtkMath::Cross( a, b, c );
  vtkMath::Cross( c , a , cqs );
  vtkMath::Normalize(cqs);
  SCALE_VEC( cqs , length / 2.0 );
}

static inline void LINE_CQS_VECTOR(double v0[3], double p[3], double cqs[3])
{
  cqs[0] = p[0] - v0[0];
  cqs[1] = p[1] - v0[1];
  cqs[2] = p[2] - v0[2];
  vtkMath::Normalize(cqs);
}

int vtkDataSetGradientPrecompute::GradientPrecompute(vtkDataSet* ds)
{
  vtkIdType nCells = ds->GetNumberOfCells();
  vtkIdType nCellNodes = 0;
  for(vtkIdType i=0;i<nCells;i++)
  {
    nCellNodes += ds->GetCell(i)->GetNumberOfPoints();
  }

  vtkDoubleArray* cqs = vtkDoubleArray::New();
  cqs->SetName("GradientPrecomputation");
  cqs->SetNumberOfComponents(3);
  cqs->SetNumberOfTuples(nCellNodes);
  cqs->FillComponent(0, 0.0);
  cqs->FillComponent(1, 0.0);
  cqs->FillComponent(2, 0.0);

  // The cell size determines the amount of space the cell takes up.  For 3D
  // cells this is the volume.  For 2D cells this is the area.  For 1D cells
  // this is the length.  For 0D cells this is undefined, but we set it to 1 so
  // as not to get invalid results when normalizing something by the cell size.
  vtkDoubleArray* cellSize = vtkDoubleArray::New();
  cellSize->SetName("CellSize");
  cellSize->SetNumberOfTuples(nCells);

  vtkIdType curPoint = 0;
  for(vtkIdType c=0;c<nCells;c++)
  {
    vtkCell* cell = ds->GetCell(c);
    int np = cell->GetNumberOfPoints();

    double cellCenter[3] = {0,0,0};
    double cellPoints[MAX_CELL_POINTS][3];
    double cellVectors[MAX_CELL_POINTS][3];
    double tmp[3];
    double size = 0.0;

    for(int p=0;p<np;p++)
    {
      ds->GetPoint( cell->GetPointId(p), cellPoints[p] );
      ADD_VEC( cellCenter , cellPoints[p] );
      ZERO_VEC( cellVectors[p] );
    }
    SCALE_VEC(cellCenter,1.0/np);

    // -= 3 D =-
    if( cell->GetCellDimension() == 3 )
    {
#ifdef VTK_DATASET_GRADIENT_TETRA_OPTIMIZATION
      if( np == 4 ) // cell is a tetrahedra
      {
        //vtkWarningMacro(<<"Tetra detected\n");
        size = fabs( vtkTetra::ComputeVolume(cellPoints[0], cellPoints[1], cellPoints[2], cellPoints[3]) ) *1.5 ;

        TETRA_CQS_VECTOR( cellPoints[0], cellPoints[1], cellPoints[2], cellPoints[3] , tmp );
        ADD_VEC(cellVectors[3],tmp);

        TETRA_CQS_VECTOR( cellPoints[1], cellPoints[2], cellPoints[3], cellPoints[0] , tmp );
        ADD_VEC(cellVectors[0],tmp);

        TETRA_CQS_VECTOR( cellPoints[2], cellPoints[3], cellPoints[0], cellPoints[1] , tmp );
        ADD_VEC(cellVectors[1],tmp);

        TETRA_CQS_VECTOR( cellPoints[3], cellPoints[0], cellPoints[1], cellPoints[2] , tmp );
        ADD_VEC(cellVectors[2],tmp);
      }
      else if( np > 4 )
#endif
      {
        vtkCell3D* cell3d = static_cast<vtkCell3D*>( cell );
        int nf = cell->GetNumberOfFaces();
        for(int f=0;f<nf;f++)
        {
          int* faceIds = 0;
          int nfp = cell->GetFace(f)->GetNumberOfPoints();
          cell3d->GetFacePoints(f,faceIds);
#ifdef VTK_DATASET_GRADIENT_TRIANGLE_OPTIMIZATION
          if( nfp == 3 ) // face is a triangle
          {
            //vtkWarningMacro(<<"triangular face detected\n");
            size+=fabs(vtkTetra::ComputeVolume(cellCenter,cellPoints[faceIds[0]],cellPoints[faceIds[1]],cellPoints[faceIds[2]]))*1.5;

            TETRA_CQS_VECTOR( cellCenter, cellPoints[faceIds[0]], cellPoints[faceIds[1]], cellPoints[faceIds[2]] , tmp );
            ADD_VEC(cellVectors[faceIds[2]],tmp);

            TETRA_CQS_VECTOR( cellCenter, cellPoints[faceIds[1]], cellPoints[faceIds[2]], cellPoints[faceIds[0]] , tmp );
            ADD_VEC(cellVectors[faceIds[0]],tmp);

            TETRA_CQS_VECTOR( cellCenter, cellPoints[faceIds[2]], cellPoints[faceIds[0]], cellPoints[faceIds[1]] , tmp );
            ADD_VEC(cellVectors[faceIds[1]],tmp);
          }
          else if( nfp > 3 ) // generic case
#endif
          {
            double faceCenter[3] = {0,0,0};
            for(int p=0;p<nfp;p++)
            {
              ADD_VEC( faceCenter , cellPoints[faceIds[p]] );
            }
            SCALE_VEC( faceCenter, 1.0/nfp );
            for(int p=0;p<nfp;p++)
            {
              int p2 = (p+1) % nfp ;
              size += fabs( vtkTetra::ComputeVolume(cellCenter, faceCenter, cellPoints[faceIds[p]] , cellPoints[faceIds[p2]]) ) ;

              TETRA_CQS_VECTOR( cellCenter, faceCenter, cellPoints[faceIds[p]] , cellPoints[faceIds[p2]] , tmp );
              ADD_VEC( cellVectors[faceIds[p2]] , tmp );

              TETRA_CQS_VECTOR( cellCenter, faceCenter, cellPoints[faceIds[p2]] , cellPoints[faceIds[p]] , tmp );
              ADD_VEC( cellVectors[faceIds[p]] , tmp );
            }
          }
        }
      }
    }

    // -= 2 D =-
    else if (cell->GetCellDimension() == 2)
    {
      if( np == 3 ) // cell is a triangle
      {
        size = fabs(vtkTriangle::TriangleArea(cellPoints[0], cellPoints[1], cellPoints[2]));

        TRIANGLE_CQS_VECTOR( cellPoints[0] , cellPoints[1] , cellPoints[2] , tmp );
        ADD_VEC( cellVectors[2] , tmp );

        TRIANGLE_CQS_VECTOR( cellPoints[1] , cellPoints[2] , cellPoints[0] , tmp );
        ADD_VEC( cellVectors[0] , tmp );

        TRIANGLE_CQS_VECTOR( cellPoints[2] , cellPoints[0] , cellPoints[1] , tmp );
        ADD_VEC( cellVectors[1] , tmp );
      }
      else if( np > 3) // generic case
      {
        for(int f=0;f<np;f++)
        {
          const int e0 = f;
          const int e1 = (f+1)%np;
          size += fabs(vtkTriangle::TriangleArea(cellCenter, cellPoints[e0], cellPoints[e1]));
          TRIANGLE_CQS_VECTOR( cellCenter , cellPoints[e0] , cellPoints[e1] , tmp );
          ADD_VEC( cellVectors[e1] , tmp );

          TRIANGLE_CQS_VECTOR( cellCenter , cellPoints[e1] , cellPoints[e0] , tmp );
          ADD_VEC( cellVectors[e0] , tmp );
        }
      }
      else
      {
        //vtkWarningMacro(<<"Can't process 2D cells with less than 3 points.");
        //return 0;
      }
    }

    // -= 1 D =-
    else if (cell->GetCellDimension() == 1)
    {
      if (np == 2) // cell is a single line segment
      {
        size
          = sqrt(vtkMath::Distance2BetweenPoints(cellPoints[0], cellPoints[1]));

        LINE_CQS_VECTOR(cellPoints[0], cellPoints[1], tmp);
        ADD_VEC(cellVectors[1], tmp);

        LINE_CQS_VECTOR(cellPoints[1], cellPoints[0], tmp);
        ADD_VEC(cellVectors[0], tmp);
      }
      else if (np > 2) // generic case, a poly line
      {
        for (int p = 0; p < np; p++)
        {
          size
            += sqrt(vtkMath::Distance2BetweenPoints(cellCenter, cellPoints[p]));
          LINE_CQS_VECTOR(cellCenter, cellPoints[p], tmp);
          ADD_VEC(cellVectors[p], tmp);
        }
      }
    }

    // -= 0 D =-
    else
    {
      // For vertex cells, estimate gradient as weighted sum of vectors from
      // centroid.
      size = 1.0;
      for (int p = 0; p < np; p++)
      {
        cellVectors[p][0] = cellPoints[p][0] - cellCenter[0];
        cellVectors[p][1] = cellPoints[p][1] - cellCenter[1];
        cellVectors[p][2] = cellPoints[p][2] - cellCenter[2];
      }
    }

    cellSize->SetTuple1(c,size);

    // check cqs consistency
#ifdef DEBUG
    double checkZero[3] = {0,0,0};
    double checkVolume = 0;
    for(int p=0;p<np;p++)
    {
      checkVolume += vtkMath::Dot( cellPoints[p] , cellVectors[p] );
      ADD_VEC(checkZero,cellVectors[p]);
      cqs->SetTuple( curPoint + p , cellVectors[p] );
    }
    checkVolume /= (double) cell->GetCellDimension();

    if( vtkMath::Norm(checkZero)>VTK_CQS_EPSILON || fabs(size-checkVolume)>VTK_CQS_EPSILON )
    {
      cout<<"Bad CQS sum at cell #"<<c<<", Sum="<<vtkMath::Norm(checkZero)<<", volume="<<size<<", ratio Vol="<<size/checkVolume<<"\n";
    }
#endif

    curPoint += np;
  }

  ds->GetFieldData()->AddArray( cqs );
  ds->GetCellData()->AddArray( cellSize );
  cqs->Delete();
  cellSize->Delete();

  return 1;
}

int vtkDataSetGradientPrecompute::RequestData(vtkInformation *vtkNotUsed(request),
                                              vtkInformationVector **inputVector,
                                              vtkInformationVector *outputVector)
{
  // get the info objects
  vtkInformation *inInfo = inputVector[0]->GetInformationObject(0);
  vtkInformation *outInfo = outputVector->GetInformationObject(0);

  // get connected input & output
  vtkDataSet* _output = vtkDataSet::SafeDownCast( outInfo->Get(vtkDataObject::DATA_OBJECT()) );
  vtkDataSet* _input = vtkDataSet::SafeDownCast( inInfo->Get(vtkDataObject::DATA_OBJECT()) );

  if( _input==0 || _output==0 )
  {
    vtkErrorMacro(<<"missing input/output connection\n");
    return 0;
  }

  _output->ShallowCopy(_input);
  return vtkDataSetGradientPrecompute::GradientPrecompute(_output);
}