1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
|
/*=========================================================================
Program: Visualization Toolkit
Module: vtkHyperStreamline.cxx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkHyperStreamline.h"
#include "vtkCellArray.h"
#include "vtkDataSet.h"
#include "vtkFloatArray.h"
#include "vtkMath.h"
#include "vtkInformation.h"
#include "vtkInformationVector.h"
#include "vtkObjectFactory.h"
#include "vtkPointData.h"
#include "vtkPolyData.h"
vtkStandardNewMacro(vtkHyperStreamline);
//
// Special classes for manipulating data
//
class vtkHyperPoint { //;prevent man page generation
public:
vtkHyperPoint(); // method sets up storage
vtkHyperPoint &operator=(const vtkHyperPoint& hp); //for resizing
double X[3]; // position
vtkIdType CellId; // cell
int SubId; // cell sub id
double P[3]; // parametric coords in cell
double W[3]; // eigenvalues (sorted in decreasing value)
double *V[3]; // pointers to eigenvectors (also sorted)
double V0[3]; // storage for eigenvectors
double V1[3];
double V2[3];
double S; // scalar value
double D; // distance travelled so far
};
class vtkHyperArray { //;prevent man page generation
public:
vtkHyperArray();
~vtkHyperArray()
{
delete [] this->Array;
};
vtkIdType GetNumberOfPoints() {return this->MaxId + 1;};
vtkHyperPoint *GetHyperPoint(vtkIdType i) {return this->Array + i;};
vtkHyperPoint *InsertNextHyperPoint()
{
if ( ++this->MaxId >= this->Size )
{
this->Resize(this->MaxId);
}
return this->Array + this->MaxId;
}
vtkHyperPoint *Resize(vtkIdType sz); //reallocates data
void Reset() {this->MaxId = -1;};
vtkHyperPoint *Array; // pointer to data
vtkIdType MaxId; // maximum index inserted thus far
vtkIdType Size; // allocated size of data
vtkIdType Extend; // grow array by this amount
double Direction; // integration direction
};
#define VTK_START_FROM_POSITION 0
#define VTK_START_FROM_LOCATION 1
vtkHyperPoint::vtkHyperPoint()
{
// Alias V to V0,V1,V2.
this->V[0] = this->V0;
this->V[1] = this->V1;
this->V[2] = this->V2;
}
vtkHyperPoint& vtkHyperPoint::operator=(const vtkHyperPoint& hp)
{
for (int i=0; i<3; i++)
{
this->X[i] = hp.X[i];
this->P[i] = hp.P[i];
this->W[i] = hp.W[i];
for (int j=0; j<3; j++)
{
this->V[j][i] = hp.V[j][i];
}
// Note: no need to write to V0,V1,V2 since they are written to via the V alias.
}
this->CellId = hp.CellId;
this->SubId = hp.SubId;
this->S = hp.S;
this->D = hp.D;
return *this;
}
vtkHyperArray::vtkHyperArray()
{
this->MaxId = -1;
this->Array = new vtkHyperPoint[1000];
this->Size = 1000;
this->Extend = 5000;
this->Direction = VTK_INTEGRATE_FORWARD;
}
vtkHyperPoint *vtkHyperArray::Resize(vtkIdType sz)
{
vtkHyperPoint *newArray;
vtkIdType newSize, i;
if (sz >= this->Size)
{
newSize = this->Size +
this->Extend*(((sz-this->Size)/this->Extend)+1);
}
else
{
newSize = sz;
}
newArray = new vtkHyperPoint[newSize];
for (i=0; i<sz; i++)
{
newArray[i] = this->Array[i];
}
this->Size = newSize;
delete [] this->Array;
this->Array = newArray;
return this->Array;
}
// Construct object with initial starting position (0,0,0); integration step
// length 0.2; step length 0.01; forward integration; terminal eigenvalue 0.0;
// number of sides 6; radius 0.5; and logarithmic scaling off.
vtkHyperStreamline::vtkHyperStreamline()
{
this->StartFrom = VTK_START_FROM_POSITION;
this->StartPosition[0] = this->StartPosition[1] = this->StartPosition[2] = 0.0;
this->StartCell = 0;
this->StartSubId = 0;
this->StartPCoords[0] = this->StartPCoords[1] = this->StartPCoords[2] = 0.5;
this->Streamers = NULL;
this->MaximumPropagationDistance = 100.0;
this->IntegrationStepLength = 0.2;
this->StepLength = 0.01;
this->IntegrationDirection = VTK_INTEGRATE_FORWARD;
this->TerminalEigenvalue = 0.0;
this->NumberOfSides = 6;
this->Radius = 0.5;
this->LogScaling = 0;
this->IntegrationEigenvector = VTK_INTEGRATE_MAJOR_EIGENVECTOR;
}
vtkHyperStreamline::~vtkHyperStreamline()
{
delete [] this->Streamers;
}
// Specify the start of the hyperstreamline in the cell coordinate system.
// That is, cellId and subId (if composite cell), and parametric coordinates.
void vtkHyperStreamline::SetStartLocation(vtkIdType cellId, int subId,
double pcoords[3])
{
if ( cellId != this->StartCell || subId != this->StartSubId ||
pcoords[0] != this->StartPCoords[0] ||
pcoords[1] != this->StartPCoords[1] ||
pcoords[2] != this->StartPCoords[2] )
{
this->Modified();
this->StartFrom = VTK_START_FROM_LOCATION;
this->StartCell = cellId;
this->StartSubId = subId;
this->StartPCoords[0] = pcoords[0];
this->StartPCoords[1] = pcoords[1];
this->StartPCoords[2] = pcoords[2];
}
}
// Specify the start of the hyperstreamline in the cell coordinate system.
// That is, cellId and subId (if composite cell), and parametric coordinates.
void vtkHyperStreamline::SetStartLocation(vtkIdType cellId, int subId,
double r, double s, double t)
{
double pcoords[3];
pcoords[0] = r;
pcoords[1] = s;
pcoords[2] = t;
this->SetStartLocation(cellId, subId, pcoords);
}
// Get the starting location of the hyperstreamline in the cell coordinate
// system. Returns the cell that the starting point is in.
vtkIdType vtkHyperStreamline::GetStartLocation(int& subId, double pcoords[3])
{
subId = this->StartSubId;
pcoords[0] = this->StartPCoords[0];
pcoords[1] = this->StartPCoords[1];
pcoords[2] = this->StartPCoords[2];
return this->StartCell;
}
// Specify the start of the hyperstreamline in the global coordinate system.
// Starting from position implies that a search must be performed to find
// initial cell to start integration from.
void vtkHyperStreamline::SetStartPosition(double x[3])
{
if ( x[0] != this->StartPosition[0] || x[1] != this->StartPosition[1] ||
x[2] != this->StartPosition[2] )
{
this->Modified();
this->StartFrom = VTK_START_FROM_POSITION;
this->StartPosition[0] = x[0];
this->StartPosition[1] = x[1];
this->StartPosition[2] = x[2];
}
}
// Specify the start of the hyperstreamline in the global coordinate system.
// Starting from position implies that a search must be performed to find
// initial cell to start integration from.
void vtkHyperStreamline::SetStartPosition(double x, double y, double z)
{
double pos[3];
pos[0] = x;
pos[1] = y;
pos[2] = z;
this->SetStartPosition(pos);
}
// Get the start position of the hyperstreamline in global x-y-z coordinates.
double *vtkHyperStreamline::GetStartPosition()
{
return this->StartPosition;
}
// Make sure coordinate systems are consistent
static void FixVectors(double **prev, double **current, int iv, int ix, int iy)
{
double p0[3], p1[3], p2[3];
double v0[3], v1[3], v2[3];
double temp[3];
int i;
for (i=0; i<3; i++)
{
v0[i] = current[i][iv];
v1[i] = current[i][ix];
v2[i] = current[i][iy];
}
if ( prev == NULL ) //make sure coord system is right handed
{
vtkMath::Cross(v0,v1,temp);
if ( vtkMath::Dot(v2,temp) < 0.0 )
{
for (i=0; i<3; i++)
{
current[i][iy] *= -1.0;
}
}
}
else //make sure vectors consistent from one point to the next
{
for (i=0; i<3; i++)
{
p0[i] = prev[i][iv];
p1[i] = prev[i][ix];
p2[i] = prev[i][iy];
}
if ( vtkMath::Dot(p0,v0) < 0.0 )
{
for (i=0; i<3; i++)
{
current[i][iv] *= -1.0;
}
}
if ( vtkMath::Dot(p1,v1) < 0.0 )
{
for (i=0; i<3; i++)
{
current[i][ix] *= -1.0;
}
}
if ( vtkMath::Dot(p2,v2) < 0.0 )
{
for (i=0; i<3; i++)
{
current[i][iy] *= -1.0;
}
}
}
}
int vtkHyperStreamline::RequestData(
vtkInformation *vtkNotUsed(request),
vtkInformationVector **inputVector,
vtkInformationVector *outputVector)
{
// get the info objects
vtkInformation *inInfo = inputVector[0]->GetInformationObject(0);
vtkInformation *outInfo = outputVector->GetInformationObject(0);
// get the input and output
vtkDataSet *input = vtkDataSet::SafeDownCast(
inInfo->Get(vtkDataObject::DATA_OBJECT()));
vtkPolyData *output = vtkPolyData::SafeDownCast(
outInfo->Get(vtkDataObject::DATA_OBJECT()));
vtkPointData *pd = input->GetPointData();
vtkDataArray *inScalars = NULL;
vtkDataArray *inTensors = NULL;
double tensor[9];
vtkHyperPoint *sNext = NULL;
vtkHyperPoint *sPtr = NULL;
int i, j, k, ptId, subId, iv, ix, iy;
vtkCell *cell = NULL;
double ev[3], xNext[3];
double d, step, dir, tol2, p[3];
double *w = NULL;
double dist2;
double closestPoint[3];
double *m[3], *v[3];
double m0[3], m1[3], m2[3];
double v0[3], v1[3], v2[3];
vtkDataArray *cellTensors = NULL;
vtkDataArray *cellScalars = NULL;
// set up working matrices
v[0] = v0; v[1] = v1; v[2] = v2;
m[0] = m0; m[1] = m1; m[2] = m2;
vtkDebugMacro(<<"Generating hyperstreamline(s)");
this->NumberOfStreamers = 0;
if ( ! (inTensors=pd->GetTensors()) )
{
vtkErrorMacro(<<"No tensor data defined!");
return 1;
}
w = new double[input->GetMaxCellSize()];
inScalars = pd->GetScalars();
cellTensors = vtkDataArray::CreateDataArray(inTensors->GetDataType());
int numComp;
if (inTensors)
{
numComp = inTensors->GetNumberOfComponents();
cellTensors->SetNumberOfComponents(numComp);
cellTensors->SetNumberOfTuples(VTK_CELL_SIZE);
}
if (inScalars)
{
cellScalars = vtkDataArray::CreateDataArray(inScalars->GetDataType());
numComp = inScalars->GetNumberOfComponents();
cellScalars->SetNumberOfComponents(numComp);
cellScalars->SetNumberOfTuples(VTK_CELL_SIZE);
}
tol2 = input->GetLength() / 1000.0;
tol2 = tol2 * tol2;
iv = this->IntegrationEigenvector;
ix = (iv + 1) % 3;
iy = (iv + 2) % 3;
//
// Create starting points
//
this->NumberOfStreamers = 1;
if ( this->IntegrationDirection == VTK_INTEGRATE_BOTH_DIRECTIONS )
{
this->NumberOfStreamers *= 2;
}
this->Streamers = new vtkHyperArray[this->NumberOfStreamers];
if ( this->StartFrom == VTK_START_FROM_POSITION )
{
sPtr = this->Streamers[0].InsertNextHyperPoint();
for (i=0; i<3; i++)
{
sPtr->X[i] = this->StartPosition[i];
}
sPtr->CellId = input->FindCell(this->StartPosition, NULL, (-1), 0.0,
sPtr->SubId, sPtr->P, w);
}
else //VTK_START_FROM_LOCATION
{
sPtr = this->Streamers[0].InsertNextHyperPoint();
cell = input->GetCell(sPtr->CellId);
cell->EvaluateLocation(sPtr->SubId, sPtr->P, sPtr->X, w);
}
//
// Finish initializing each hyperstreamline
//
this->Streamers[0].Direction = 1.0;
sPtr = this->Streamers[0].GetHyperPoint(0);
sPtr->D = 0.0;
if ( sPtr->CellId >= 0 ) //starting point in dataset
{
cell = input->GetCell(sPtr->CellId);
cell->EvaluateLocation(sPtr->SubId, sPtr->P, xNext, w);
inTensors->GetTuples(cell->PointIds, cellTensors);
// interpolate tensor, compute eigenfunctions
for (j=0; j<3; j++)
{
for (i=0; i<3; i++)
{
m[i][j] = 0.0;
}
}
for (k=0; k < cell->GetNumberOfPoints(); k++)
{
cellTensors->GetTuple(k, tensor);
for (j=0; j<3; j++)
{
for (i=0; i<3; i++)
{
m[i][j] += tensor[i+3*j] * w[k];
}
}
}
vtkMath::Jacobi(m, sPtr->W, sPtr->V);
FixVectors(NULL, sPtr->V, iv, ix, iy);
if ( inScalars )
{
inScalars->GetTuples(cell->PointIds, cellScalars);
for (sPtr->S=0, i=0; i < cell->GetNumberOfPoints(); i++)
{
sPtr->S += cellScalars->GetTuple(i)[0] * w[i];
}
}
if ( this->IntegrationDirection == VTK_INTEGRATE_BOTH_DIRECTIONS )
{
this->Streamers[1].Direction = -1.0;
sNext = this->Streamers[1].InsertNextHyperPoint();
*sNext = *sPtr;
}
else if ( this->IntegrationDirection == VTK_INTEGRATE_BACKWARD )
{
this->Streamers[0].Direction = -1.0;
}
} //for hyperstreamline in dataset
//
// For each hyperstreamline, integrate in appropriate direction (using RK2).
//
for (ptId=0; ptId < this->NumberOfStreamers; ptId++)
{
//get starting step
sPtr = this->Streamers[ptId].GetHyperPoint(0);
if ( sPtr->CellId < 0 )
{
continue;
}
dir = this->Streamers[ptId].Direction;
cell = input->GetCell(sPtr->CellId);
cell->EvaluateLocation(sPtr->SubId, sPtr->P, xNext, w);
step = this->IntegrationStepLength * sqrt(cell->GetLength2());
inTensors->GetTuples(cell->PointIds, cellTensors);
if ( inScalars ) {inScalars->GetTuples(cell->PointIds, cellScalars);}
//integrate until distance has been exceeded
while ( sPtr->CellId >= 0 && fabs(sPtr->W[0]) > this->TerminalEigenvalue &&
sPtr->D < this->MaximumPropagationDistance )
{
//compute updated position using this step (Euler integration)
for (i=0; i<3; i++)
{
xNext[i] = sPtr->X[i] + dir * step * sPtr->V[i][iv];
}
// compute updated position using updated step
//
// one potential bug here to be fixed as cell->EvaluatePosition() may return
// 1: xNext inside the current cell
// 0: xNext outside the current cell
//-1: numerical error occurs
// In case of 0, input->FindCell() needs to be called to justify
// subsequent tensor interpolation and Jacob computation.
// In case of -1, the while() loop needs to be broken to avoid uncertainties
//
cell->EvaluatePosition(xNext, closestPoint, subId, p, dist2, w);
//interpolate tensor
for (j=0; j<3; j++)
{
for (i=0; i<3; i++)
{
m[i][j] = 0.0;
}
}
for (k=0; k < cell->GetNumberOfPoints(); k++)
{
cellTensors->GetTuple(k, tensor);
for (j=0; j<3; j++)
{
for (i=0; i<3; i++)
{
m[i][j] += tensor[i+3*j] * w[k];
}
}
}
vtkMath::Jacobi(m, ev, v);
FixVectors(sPtr->V, v, iv, ix, iy);
//now compute final position
for (i=0; i<3; i++)
{
xNext[i] = sPtr->X[i] +
dir * (step/2.0) * (sPtr->V[i][iv] + v[i][iv]);
}
// get the safe handle to sPtr in case the vtkHyperPoint array is resized.
// A resize operation usually changes the address of the memory block.
// This safe handle prevents sPtr from being a broken / wild pointer
// that might be indirectly caused through InsertNextHyperPoint()
vtkIdType sPtrId = this->Streamers[ptId].GetNumberOfPoints() - 1;
// now feel free to insert a new vtkHyperPoint
sNext = this->Streamers[ptId].InsertNextHyperPoint();
// make sure sPtr points to the target in a possibly-resized memory block
sPtr = this->Streamers[ptId].GetHyperPoint(sPtrId);
int evalResult = cell->EvaluatePosition(xNext, closestPoint, sNext->SubId,
sNext->P, dist2, w);
if ( evalResult == 1 )
{ //integration still in cell
for (i=0; i<3; i++)
{
sNext->X[i] = closestPoint[i];
}
sNext->CellId = sPtr->CellId;
sNext->SubId = sPtr->SubId;
}
else
if ( evalResult == 0 )
{ //integration has passed out of cell
sNext->CellId = input->FindCell(xNext, cell, sPtr->CellId, tol2,
sNext->SubId, sNext->P, w);
if ( sNext->CellId >= 0 ) //make sure not out of dataset
{
for (i=0; i<3; i++)
{
sNext->X[i] = xNext[i];
}
cell = input->GetCell(sNext->CellId);
inTensors->GetTuples(cell->PointIds, cellTensors);
if (inScalars){inScalars->GetTuples(cell->PointIds, cellScalars);}
step = this->IntegrationStepLength * sqrt(cell->GetLength2());
}
}
else
{ // evalResult = -1: numerical error occurs, rarely but possibly
// All returned values are invalid and should be ignored
// and the segment "if ( sNext->CellId >= 0 ) {...}" will be skipped
sNext->CellId = -1;
}
if ( sNext->CellId >= 0 )
{
cell->EvaluateLocation(sNext->SubId, sNext->P, xNext, w);
for (j=0; j<3; j++)
{
for (i=0; i<3; i++)
{
m[i][j] = 0.0;
}
}
for (k=0; k < cell->GetNumberOfPoints(); k++)
{
cellTensors->GetTuple(k, tensor);
for (j=0; j<3; j++)
{
for (i=0; i<3; i++)
{
m[i][j] += tensor[i+3*j] * w[k];
}
}
}
vtkMath::Jacobi(m, sNext->W, sNext->V);
FixVectors(sPtr->V, sNext->V, iv, ix, iy);
if ( inScalars )
{
for (sNext->S=0.0, i=0; i < cell->GetNumberOfPoints(); i++)
{
sNext->S += cellScalars->GetTuple(i)[0] * w[i];
}
}
d = sqrt(vtkMath::Distance2BetweenPoints(sPtr->X,sNext->X));
sNext->D = sPtr->D + d;
}
else
{ // follow-up for evalResult = -1: to enable the next line of code
sNext = sPtr;
}
sPtr = sNext;
}//for elapsed time
} //for each hyperstreamline
int retval = this->BuildTube(input, output);
delete [] w;
cellTensors->Delete();
if (cellScalars)
{
cellScalars->Delete();
}
return retval;
}
int vtkHyperStreamline::BuildTube(vtkDataSet *input, vtkPolyData *output)
{
vtkHyperPoint *sPrev, *sPtr;
vtkPoints *newPts;
vtkFloatArray *newVectors;
vtkFloatArray *newNormals;
vtkFloatArray *newScalars=NULL;
vtkCellArray *newStrips;
vtkIdType i, npts, ptOffset=0;
int ptId, j, id, k, i1, i2;
double dOffset, x[3], v[3], s, r, r1[3], r2[3], stepLength;
double xT[3], sFactor, normal[3], w[3];
double theta=2.0*vtkMath::Pi()/this->NumberOfSides;
vtkPointData *outPD;
int iv, ix, iy;
vtkIdType numIntPts;
//
// Initialize
//
vtkDebugMacro(<<"Creating hyperstreamline tube");
if ( this->NumberOfStreamers <= 0 )
{
return 0;
}
stepLength = input->GetLength() * this->StepLength;
outPD = output->GetPointData();
iv = this->IntegrationEigenvector;
ix = (iv+1) % 3;
iy = (iv+2) % 3;
//
// Allocate
//
newPts = vtkPoints::New();
newPts ->Allocate(2500);
if ( input->GetPointData()->GetScalars() )
{
newScalars = vtkFloatArray::New();
newScalars->Allocate(2500);
}
newVectors = vtkFloatArray::New();
newVectors->SetNumberOfComponents(3);
newVectors->Allocate(7500);
newNormals = vtkFloatArray::New();
newNormals->SetNumberOfComponents(3);
newNormals->Allocate(7500);
newStrips = vtkCellArray::New();
newStrips->Allocate(newStrips->EstimateSize(3*this->NumberOfStreamers,
VTK_CELL_SIZE));
//
// Loop over all hyperstreamlines generating points
//
for (ptId=0; ptId < this->NumberOfStreamers; ptId++)
{
if ( (numIntPts=this->Streamers[ptId].GetNumberOfPoints()) < 2 )
{
continue;
}
sPrev = this->Streamers[ptId].GetHyperPoint(0);
sPtr = this->Streamers[ptId].GetHyperPoint(1);
// compute scale factor
i = (sPrev->W[ix] > sPrev->W[iy] ? ix : iy);
if ( sPrev->W[i] == 0.0 )
{
sFactor = 1.0;
}
else
{
sFactor = this->Radius / sPrev->W[i];
}
if ( numIntPts == 2 && sPtr->CellId < 0 )
{
continue;
}
dOffset = sPrev->D;
for ( npts=0, i=1; i < numIntPts && sPtr->CellId >= 0;
i++, sPrev=sPtr, sPtr=this->Streamers[ptId].GetHyperPoint(i) )
{
//
// Bracket steps and construct tube points
//
while ( dOffset >= sPrev->D && dOffset < sPtr->D )
{
r = (dOffset - sPrev->D) / (sPtr->D - sPrev->D);
for (j=0; j<3; j++) //compute point in center of tube
{
x[j] = sPrev->X[j] + r * (sPtr->X[j] - sPrev->X[j]);
v[j] = sPrev->V[j][iv] + r * (sPtr->V[j][iv] - sPrev->V[j][iv]);
r1[j] = sPrev->V[j][ix] + r * (sPtr->V[j][ix] - sPrev->V[j][ix]);
r2[j] = sPrev->V[j][iy] + r * (sPtr->V[j][iy] - sPrev->V[j][iy]);
w[j] = sPrev->W[j] + r * (sPtr->W[j] - sPrev->W[j]);
}
// construct points around tube
for (k=0; k < this->NumberOfSides; k++)
{
for (j=0; j<3; j++)
{
normal[j] = w[ix]*r1[j]*cos(k*theta) +
w[iy]*r2[j]*sin(k*theta);
xT[j] = x[j] + sFactor * normal[j];
}
id = newPts->InsertNextPoint(xT);
newVectors->InsertTuple(id,v);
vtkMath::Normalize(normal);
newNormals->InsertTuple(id,normal);
}
if ( newScalars ) //add scalars around tube
{
s = sPrev->S + r * (sPtr->S - sPrev->S);
for (k=0; k<this->NumberOfSides; k++)
{
newScalars->InsertNextTuple(&s);
}
}
npts++;
dOffset += stepLength;
} //while
} //for this hyperstreamline
//
// Generate the strips for this hyperstreamline
//
for (k=0; k<this->NumberOfSides; k++)
{
i1 = (k+1) % this->NumberOfSides;
newStrips->InsertNextCell(npts*2);
for (i=0; i < npts; i++)
{
//make sure strip definition consistent with normals
if (this->Streamers[ptId].Direction > 0.0)
{
i2 = i*this->NumberOfSides;
}
else
{
i2 = (npts - i - 1) * this->NumberOfSides;
}
newStrips->InsertCellPoint(ptOffset+i2+k);
newStrips->InsertCellPoint(ptOffset+i2+i1);
}
}//for all tube sides
ptOffset += this->NumberOfSides*npts;
} //for all hyperstreamlines
//
// Update ourselves
//
output->SetPoints(newPts);
newPts->Delete();
output->SetStrips(newStrips);
newStrips->Delete();
if ( newScalars )
{
int idx = outPD->AddArray(newScalars);
outPD->SetActiveAttribute(idx, vtkDataSetAttributes::SCALARS);
newScalars->Delete();
}
outPD->SetNormals(newNormals);
newNormals->Delete();
outPD->SetVectors(newVectors);
newVectors->Delete();
output->Squeeze();
return 1;
}
int vtkHyperStreamline::FillInputPortInformation(int, vtkInformation *info)
{
info->Set(vtkAlgorithm::INPUT_REQUIRED_DATA_TYPE(), "vtkDataSet");
return 1;
}
void vtkHyperStreamline::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os,indent);
if ( this->StartFrom == VTK_START_FROM_POSITION )
{
os << indent << "Starting Position: (" << this->StartPosition[0] << ","
<< this->StartPosition[1] << ", " << this->StartPosition[2] << ")\n";
}
else
{
os << indent << "Starting Location:\n\tCell: " << this->StartCell
<< "\n\tSubId: " << this->StartSubId << "\n\tP.Coordinates: ("
<< this->StartPCoords[0] << ", "
<< this->StartPCoords[1] << ", "
<< this->StartPCoords[2] << ")\n";
}
os << indent << "Maximum Propagation Distance: "
<< this->MaximumPropagationDistance << "\n";
if ( this->IntegrationDirection == VTK_INTEGRATE_FORWARD )
{
os << indent << "Integration Direction: FORWARD\n";
}
else if ( this->IntegrationDirection == VTK_INTEGRATE_BACKWARD )
{
os << indent << "Integration Direction: BACKWARD\n";
}
else
{
os << indent << "Integration Direction: FORWARD & BACKWARD\n";
}
os << indent << "Integration Step Length: " << this->IntegrationStepLength << "\n";
os << indent << "Step Length: " << this->StepLength << "\n";
os << indent << "Terminal Eigenvalue: " << this->TerminalEigenvalue << "\n";
os << indent << "Radius: " << this->Radius << "\n";
os << indent << "Number Of Sides: " << this->NumberOfSides << "\n";
os << indent << "Logarithmic Scaling: " << (this->LogScaling ? "On\n" : "Off\n");
if ( this->IntegrationEigenvector == 0 )
{
os << indent << "Integrate Along Major Eigenvector\n";
}
else if ( this->IntegrationEigenvector == 1 )
{
os << indent << "Integrate Along Medium Eigenvector\n";
}
else
{
os << indent << "Integrate Along Minor Eigenvector\n";
}
}
|