1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
|
/*=========================================================================
Program: Visualization Toolkit
Module: vtkImageMarchingCubes.cxx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkImageMarchingCubes.h"
#include "vtkCellArray.h"
#include "vtkCommand.h"
#include "vtkFloatArray.h"
#include "vtkImageData.h"
#include "vtkInformation.h"
#include "vtkInformationExecutivePortKey.h"
#include "vtkInformationVector.h"
#include "vtkMarchingCubesTriangleCases.h"
#include "vtkObjectFactory.h"
#include "vtkPointData.h"
#include "vtkPolyData.h"
#include "vtkStreamingDemandDrivenPipeline.h"
#include <cmath>
vtkStandardNewMacro(vtkImageMarchingCubes);
//----------------------------------------------------------------------------
// Description:
// Construct object with initial range (0,1) and single contour value
// of 0.0. ComputeNormal is on, ComputeGradients is off and ComputeScalars is on.
vtkImageMarchingCubes::vtkImageMarchingCubes()
{
this->ContourValues = vtkContourValues::New();
this->ComputeNormals = 1;
this->ComputeGradients = 0;
this->ComputeScalars = 1;
this->LocatorPointIds = NULL;
this->InputMemoryLimit = 10240; // 10 mega Bytes
}
vtkImageMarchingCubes::~vtkImageMarchingCubes()
{
this->ContourValues->Delete();
}
// Description:
// Overload standard modified time function. If contour values are modified,
// then this object is modified as well.
vtkMTimeType vtkImageMarchingCubes::GetMTime()
{
vtkMTimeType mTime=this->Superclass::GetMTime();
vtkMTimeType contourValuesMTime=this->ContourValues->GetMTime();
mTime = ( contourValuesMTime > mTime ? contourValuesMTime : mTime );
return mTime;
}
//----------------------------------------------------------------------------
template <class T>
int vtkImageMarchingCubesGetTypeSize(T*)
{
return sizeof(T);
}
//----------------------------------------------------------------------------
int vtkImageMarchingCubes::RequestData(
vtkInformation *vtkNotUsed(request),
vtkInformationVector **inputVector,
vtkInformationVector *outputVector)
{
// get the info objects
vtkInformation *inInfo = inputVector[0]->GetInformationObject(0);
vtkInformation *outInfo = outputVector->GetInformationObject(0);
// get the input and output
vtkImageData *inData = vtkImageData::SafeDownCast(
inInfo->Get(vtkDataObject::DATA_OBJECT()));
vtkPolyData *output = vtkPolyData::SafeDownCast(
outInfo->Get(vtkDataObject::DATA_OBJECT()));
vtkDemandDrivenPipeline* inputExec =
vtkDemandDrivenPipeline::SafeDownCast(
vtkExecutive::PRODUCER()->GetExecutive(inInfo));
int numContours=this->ContourValues->GetNumberOfContours();
double *values=this->ContourValues->GetValues();
vtkDebugMacro("Starting Execute Method");
// Gradients must be computed (but not saved) if Compute normals is on.
this->NeedGradients = this->ComputeGradients || this->ComputeNormals;
// Determine the number of slices per request from input memory limit.
int minSlicesPerChunk, chunkOverlap;
if (this->NeedGradients)
{
minSlicesPerChunk = 4;
chunkOverlap = 3;
}
else
{
minSlicesPerChunk = 2;
chunkOverlap = 1;
}
inputExec->UpdateInformation();
// Each data type requires a different amount of memory.
vtkIdType temp;
switch (inData->GetScalarType())
{
vtkTemplateMacro(
temp = vtkImageMarchingCubesGetTypeSize(static_cast<VTK_TT*>(0))
);
default:
vtkErrorMacro(<< "Could not determine input scalar type.");
return 1;
}
int extent[6];
inInfo->Get(vtkStreamingDemandDrivenPipeline::WHOLE_EXTENT(), extent);
// multiply by the area of each slice
temp *= extent[1] - extent[0] + 1;
temp *= extent[3] - extent[2] + 1;
// temp holds memory per image. (+1 to avoid dividing by zero)
this->NumberOfSlicesPerChunk =
static_cast<int>(this->InputMemoryLimit * 1024 / (temp + 1));
if (this->NumberOfSlicesPerChunk < minSlicesPerChunk)
{
vtkWarningMacro("Execute: Need "
<< minSlicesPerChunk*(temp/1024) << " KB to load "
<< minSlicesPerChunk << " slices.\n");
this->NumberOfSlicesPerChunk = minSlicesPerChunk;
}
vtkDebugMacro("Execute: NumberOfSlicesPerChunk = "
<< this->NumberOfSlicesPerChunk);
this->NumberOfSlicesPerChunk -= chunkOverlap;
// Create the points, scalars, normals and Cell arrays for the output.
// estimate the number of points from the volume dimensions
vtkIdType estimatedSize = static_cast<vtkIdType>(extent[1] - extent[0] + 1);
estimatedSize *= static_cast<vtkIdType>(extent[3] - extent[2] + 1);
estimatedSize *= static_cast<vtkIdType>(extent[5] - extent[4] + 1);
estimatedSize = static_cast<vtkIdType>(pow(1.0*estimatedSize, 0.75));
estimatedSize = (estimatedSize / 1024) * 1024; //multiple of 1024
if (estimatedSize < 1024)
{
estimatedSize = 1024;
}
vtkDebugMacro(<< "Estimated number of points/triangles: " << estimatedSize);
this->Points = vtkPoints::New();
this->Points->Allocate(estimatedSize,estimatedSize/2);
this->Triangles = vtkCellArray::New();
this->Triangles->Allocate(estimatedSize,estimatedSize/2);
if (this->ComputeScalars)
{
this->Scalars = vtkFloatArray::New();
this->Scalars->Allocate(estimatedSize,estimatedSize/2);
}
if (this->ComputeNormals)
{
this->Normals = vtkFloatArray::New();
this->Normals->SetNumberOfComponents(3);
this->Normals->Allocate(3*estimatedSize,3*estimatedSize/2);
}
if (this->ComputeGradients)
{
this->Gradients = vtkFloatArray::New();
this->Gradients->SetNumberOfComponents(3);
this->Gradients->Allocate(3*estimatedSize,3*estimatedSize/2);
}
// Initialize the internal point locator (edge table for oen image of cubes).
this->InitializeLocator(extent[0], extent[1], extent[2], extent[3]);
// Loop through the chunks running marching cubes on each one
int zMin = extent[4];
int zMax = extent[5];
for(int chunkMin = zMin, chunkMax; chunkMin < zMax; chunkMin = chunkMax)
{
// Get the chunk from the input
chunkMax = chunkMin + this->NumberOfSlicesPerChunk;
if (chunkMax > zMax)
{
chunkMax = zMax;
}
extent[4] = chunkMin;
extent[5] = chunkMax;
// Expand if computing gradients with central differences
if (this->NeedGradients)
{
--extent[4];
++extent[5];
}
// Don't go over boundary of data.
if (extent[4] < zMin)
{
extent[4] = zMin;
}
if (extent[5] > zMax)
{
extent[5] = zMax;
}
// Get the chunk from the input
inInfo->Set(vtkStreamingDemandDrivenPipeline::UPDATE_EXTENT(),
extent, 6);
inputExec->Update();
this->March(inData, chunkMin, chunkMax, numContours, values);
if ( !this->AbortExecute )
{
this->UpdateProgress(static_cast<double>(chunkMax-zMin)/(zMax-zMin));
}
if (vtkDataObject::GetGlobalReleaseDataFlag() ||
inInfo->Has(vtkStreamingDemandDrivenPipeline::RELEASE_DATA()))
{
inData->ReleaseData();
}
}
// Put results in our output
vtkDebugMacro(<<"Created: "
<< this->Points->GetNumberOfPoints() << " points, "
<< this->Triangles->GetNumberOfCells() << " triangles");
output->SetPoints(this->Points);
this->Points->Delete();
this->Points = NULL;
output->SetPolys(this->Triangles);
this->Triangles->Delete();
this->Triangles = NULL;
if (this->ComputeScalars)
{
int idx = output->GetPointData()->AddArray(this->Scalars);
output->GetPointData()->SetActiveAttribute(idx, vtkDataSetAttributes::SCALARS);
this->Scalars->Delete();
this->Scalars = NULL;
}
if (this->ComputeNormals)
{
output->GetPointData()->SetNormals(this->Normals);
this->Normals->Delete();
this->Normals = NULL;
}
// Recover extra space.
output->Squeeze();
// release the locators memory
this->DeleteLocator();
return 1;
}
//----------------------------------------------------------------------------
// This method uses central differences to compute the gradient
// of a point. Note: This method assumes that max > min for all 3 axes!
// It does not consider the dataset spacing.
// b0 (b1, b2) indicates the boundary conditions for the three axes.:
// b0 = -1 => pixel is on x axis minimum of region.
// b0 = 0 => no boundary conditions
// b0 = +1 => pixel is on x axis maximum of region.
template <class T>
void vtkImageMarchingCubesComputePointGradient(T *ptr, double *g,
int inc0, int inc1, int inc2,
short b0, short b1, short b2)
{
if (b0 < 0)
{
g[0] = (double)(ptr[inc0]) - (double)(*ptr);
}
else if (b0 > 0)
{
g[0] = (double)(*ptr) - (double)(ptr[-inc0]);
}
else
{
g[0] = (double)(ptr[inc0]) - (double)(ptr[-inc0]);
}
if (b1 < 0)
{
g[1] = (double)(ptr[inc1]) - (double)(*ptr);
}
else if (b1 > 0)
{
g[1] = (double)(*ptr) - (double)(ptr[-inc1]);
}
else
{
g[1] = (double)(ptr[inc1]) - (double)(ptr[-inc1]);
}
if (b2 < 0)
{
g[2] = (double)(ptr[inc2]) - (double)(*ptr);
}
else if (b2 > 0)
{
g[2] = (double)(*ptr) - (double)(ptr[-inc2]);
}
else
{
g[2] = (double)(ptr[inc2]) - (double)(ptr[-inc2]);
}
}
//----------------------------------------------------------------------------
// This method interpolates vertices to make a new point.
template <class T>
int vtkImageMarchingCubesMakeNewPoint(vtkImageMarchingCubes *self,
int idx0, int idx1, int idx2,
int inc0, int inc1, int inc2,
T *ptr, int edge,
int *imageExtent,
double *spacing, double *origin,
double value)
{
int edgeAxis = 0;
T *ptrB = NULL;
double temp, pt[3];
// decode the edge into starting point and axis direction
switch (edge)
{
case 0: // 0,1
ptrB = ptr + inc0;
edgeAxis = 0;
break;
case 1: // 1,2
++idx0;
ptr += inc0;
ptrB = ptr + inc1;
edgeAxis = 1;
break;
case 2: // 3,2
++idx1;
ptr += inc1;
ptrB = ptr + inc0;
edgeAxis = 0;
break;
case 3: // 0,3
ptrB = ptr + inc1;
edgeAxis = 1;
break;
case 4: // 4,5
++idx2;
ptr += inc2;
ptrB = ptr + inc0;
edgeAxis = 0;
break;
case 5: // 5,6
++idx0; ++idx2;
ptr += inc0 + inc2;
ptrB = ptr + inc1;
edgeAxis = 1;
break;
case 6: // 7,6
++idx1; ++idx2;
ptr += inc1 + inc2;
ptrB = ptr + inc0;
edgeAxis = 0;
break;
case 7: // 4,7
++idx2;
ptr += inc2;
ptrB = ptr + inc1;
edgeAxis = 1;
break;
case 8: // 0,4
ptrB = ptr + inc2;
edgeAxis = 2;
break;
case 9: // 1,5
++idx0;
ptr += inc0;
ptrB = ptr + inc2;
edgeAxis = 2;
break;
case 10: // 3,7
++idx1;
ptr += inc1;
ptrB = ptr + inc2;
edgeAxis = 2;
break;
case 11: // 2,6
++idx0; ++idx1;
ptr += inc0 + inc1;
ptrB = ptr + inc2;
edgeAxis = 2;
break;
}
// interpolation factor
temp = (value - *ptr) / (*ptrB - *ptr);
// interpolate the point position
switch (edgeAxis)
{
case 0:
pt[0] = origin[0] + spacing[0] * ((double)idx0 + temp);
pt[1] = origin[1] + spacing[1] * ((double)idx1);
pt[2] = origin[2] + spacing[2] * ((double)idx2);
break;
case 1:
pt[0] = origin[0] + spacing[0] * ((double)idx0);
pt[1] = origin[1] + spacing[1] * ((double)idx1 + temp);
pt[2] = origin[2] + spacing[2] * ((double)idx2);
break;
case 2:
pt[0] = origin[0] + spacing[0] * ((double)idx0);
pt[1] = origin[1] + spacing[1] * ((double)idx1);
pt[2] = origin[2] + spacing[2] * ((double)idx2 + temp);
break;
}
// Save the scale if we are generating scalars
if (self->ComputeScalars)
{
self->Scalars->InsertNextValue(value);
}
// Interpolate to find normal from vectors.
if (self->NeedGradients)
{
short b0, b1, b2;
double g[3], gB[3];
// Find boundary conditions and compute gradient (first point)
b0 = (idx0 == imageExtent[1]);
if (idx0 == imageExtent[0])
{
b0 = -1;
}
b1 = (idx1 == imageExtent[3]);
if (idx1 == imageExtent[2])
{
b1 = -1;
}
b2 = (idx2 == imageExtent[5]);
if (idx2 == imageExtent[4])
{
b2 = -1;
}
vtkImageMarchingCubesComputePointGradient(ptr, g, inc0, inc1, inc2,
b0, b1, b2);
// Find boundary conditions and compute gradient (second point)
switch (edgeAxis)
{
case 0:
++idx0;
b0 = (idx0 == imageExtent[1]);
break;
case 1:
++idx1;
b1 = (idx1 == imageExtent[3]);
break;
case 2:
++idx2;
b2 = (idx2 == imageExtent[5]);
break;
}
vtkImageMarchingCubesComputePointGradient(ptrB, gB, inc0, inc1, inc2,
b0, b1, b2);
// Interpolate Gradient
g[0] = (g[0] + temp * (gB[0] - g[0])) / spacing[0];
g[1] = (g[1] + temp * (gB[1] - g[1])) / spacing[1];
g[2] = (g[2] + temp * (gB[2] - g[2])) / spacing[2];
if (self->ComputeGradients)
{
self->Gradients->InsertNextTuple(g);
}
if (self->ComputeNormals)
{
temp = -1.0 / sqrt(g[0]*g[0] + g[1]*g[1] + g[2]*g[2]);
g[0] *= temp;
g[1] *= temp;
g[2] *= temp;
self->Normals->InsertNextTuple(g);
}
}
return self->Points->InsertNextPoint(pt);
}
//----------------------------------------------------------------------------
// This method runs marching cubes on one cube.
template <class T>
void vtkImageMarchingCubesHandleCube(vtkImageMarchingCubes *self,
int cellX, int cellY, int cellZ,
vtkImageData *inData,
T *ptr, int numContours, double *values)
{
vtkIdType inc0, inc1, inc2;
int valueIdx;
double value;
int cubeIndex, ii;
vtkIdType pointIds[3];
vtkMarchingCubesTriangleCases *triCase, *triCases;
vtkInformation *inInfo = self->GetExecutive()->GetInputInformation(0, 0);
triCases = vtkMarchingCubesTriangleCases::GetCases();
inData->GetIncrements(inc0, inc1, inc2);
for (valueIdx = 0; valueIdx < numContours; ++valueIdx)
{
value = values[valueIdx];
// compute the case index
cubeIndex = 0;
if ((double)(ptr[0]) > value)
{
cubeIndex += 1;
}
if ((double)(ptr[inc0]) > value)
{
cubeIndex += 2;
}
if ((double)(ptr[inc0 + inc1]) > value)
{
cubeIndex += 4;
}
if ((double)(ptr[inc1]) > value)
{
cubeIndex += 8;
}
if ((double)(ptr[inc2]) > value)
{
cubeIndex += 16;
}
if ((double)(ptr[inc0 + inc2]) > value)
{
cubeIndex += 32;
}
if ((double)(ptr[inc0 + inc1 + inc2]) > value)
{
cubeIndex += 64;
}
if ((double)(ptr[inc1 + inc2]) > value)
{
cubeIndex += 128;
}
// Make sure we have trianlges
if (cubeIndex != 0 && cubeIndex != 255)
{
// Get edges.
triCase = triCases + cubeIndex;
EDGE_LIST *edge = triCase->edges;
// loop over triangles
while(*edge > -1)
{
for (ii=0; ii<3; ++ii, ++edge) //insert triangle
{
// Get the index of the point
pointIds[ii] = self->GetLocatorPoint(cellX, cellY, *edge);
// If the point has not been created yet
if (pointIds[ii] == -1)
{
double *spacing = inData->GetSpacing();
double *origin = inData->GetOrigin();
int *extent =
inInfo->Get(vtkStreamingDemandDrivenPipeline::WHOLE_EXTENT());
pointIds[ii] = vtkImageMarchingCubesMakeNewPoint(self,
cellX, cellY, cellZ,
inc0, inc1, inc2,
ptr, *edge, extent,
spacing, origin, value);
self->AddLocatorPoint(cellX, cellY, *edge, pointIds[ii]);
}
}
self->Triangles->InsertNextCell(3,pointIds);
}//for each triangle
}
}
}
//----------------------------------------------------------------------------
template <class T>
void vtkImageMarchingCubesMarch(vtkImageMarchingCubes *self,
vtkImageData *inData, T *ptr,
int chunkMin, int chunkMax,
int numContours, double *values)
{
int idx0, idx1, idx2;
int min0, max0, min1, max1, min2, max2;
vtkIdType inc0, inc1, inc2;
T *ptr0, *ptr1, *ptr2;
unsigned long target, count;
// avoid warnings
(void)ptr;
// Get information to loop through images.
inData->GetExtent(min0, max0, min1, max1, min2, max2);
ptr2 = (T *)(inData->GetScalarPointer(min0, min1, chunkMin));
inData->GetIncrements(inc0, inc1, inc2);
// Setup the abort interval
target = (unsigned long)((max0-min0+1) * (max1-min1+1) / 50.0);
++target;
count = 0;
// Loop over all the cubes
for (idx2 = chunkMin; idx2 < chunkMax; ++idx2)
{
ptr1 = ptr2;
for (idx1 = min1; idx1 < max1; ++idx1)
{
if (!(count%target))
{
if (self->GetAbortExecute())
{
return;
}
}
count++;
// continue with last loop
ptr0 = ptr1;
for (idx0 = min0; idx0 < max0; ++idx0)
{
// put magnitudes into the cube structure.
vtkImageMarchingCubesHandleCube(self, idx0, idx1, idx2, inData, ptr0,
numContours, values);
ptr0 += inc0;
}
ptr1 += inc1;
}
ptr2 += inc2;
self->IncrementLocatorZ();
}
}
//----------------------------------------------------------------------------
// This method calls the proper templade function.
void vtkImageMarchingCubes::March(vtkImageData *inData,
int chunkMin, int chunkMax,
int numContours, double *values)
{
void *ptr = inData->GetScalarPointer();
switch (inData->GetScalarType())
{
vtkTemplateMacro(
vtkImageMarchingCubesMarch(this, inData, static_cast<VTK_TT*>(ptr),
chunkMin, chunkMax, numContours, values)
);
default:
vtkErrorMacro(<< "Unknown output ScalarType");
return;
}
}
//============================================================================
// These method act as the point locator so vertices will be shared.
// One 2d array of cubes is stored. (z dimension is ignored).
// Points are indexed by their cube and edge.
// Shared edges are only represented once. Cubes are responsible for
// edges on their min faces. Their is an extra row and column of cubes
// to store the max edges of the last row/column of cubes,
//----------------------------------------------------------------------------
// This method allocates and initializes the point array.
// One 2d array of cubes is stored. (z dimension is ignored).
void vtkImageMarchingCubes::InitializeLocator(int min0, int max0,
int min1, int max1)
{
// Free old memory
delete [] this->LocatorPointIds;
// Extra row and column
this->LocatorDimX = (max0 - min0 + 2);
this->LocatorDimY = (max1 - min1 + 2);
this->LocatorMinX = min0;
this->LocatorMinY = min1;
// 5 non shared edges.
vtkIdType size = 5;
size *= static_cast<vtkIdType>(this->LocatorDimX);
size *= static_cast<vtkIdType>(this->LocatorDimY);
this->LocatorPointIds = new vtkIdType[size];
// Initialize the array
for (vtkIdType idx = 0; idx < size; ++idx)
{
this->LocatorPointIds[idx] = -1;
}
}
//----------------------------------------------------------------------------
// This method frees the locators memory.
void vtkImageMarchingCubes::DeleteLocator()
{
// Free old memory
delete [] this->LocatorPointIds;
this->LocatorPointIds = NULL;
}
//----------------------------------------------------------------------------
// This method moves the Z index of the locator up one slice.
void vtkImageMarchingCubes::IncrementLocatorZ()
{
vtkIdType *ptr = this->LocatorPointIds;
for (int y = 0; y < this->LocatorDimY; ++y)
{
for (int x = 0; x < this->LocatorDimX; ++x)
{
ptr[0] = ptr[4];
ptr[3] = ptr[1];
ptr[1] = ptr[2] = ptr[4] = -1;
ptr += 5;
}
}
}
//----------------------------------------------------------------------------
// This method adds a point to the array. Cube is the X/Y cube,
// segment is the index of the segment (same as marching cubes).(XYZ)
// (0,0,0)->(1,0,0): 0, (1,0,0)->(1,1,0): 1,
// (1,1,0)->(0,1,0): 2, (0,1,0)->(0,0,0): 3,
// (0,0,1)->(1,0,1): 4, (1,0,1)->(1,1,1): 5,
// (1,1,1)->(0,1,1): 6, (0,1,1)->(0,0,1): 7,
// (0,0,0)->(0,0,1): 8, (1,0,0)->(1,0,1): 9,
// (0,1,0)->(0,1,1): 10, (1,1,0)->(1,1,1): 11.
// Shared edges are computed internaly. (no error checking)
void vtkImageMarchingCubes::AddLocatorPoint(int cellX, int cellY, int edge,
vtkIdType ptId)
{
// Get the correct position in the array.
vtkIdType *ptr = this->GetLocatorPointer(cellX, cellY, edge);
*ptr = ptId;
}
//----------------------------------------------------------------------------
// This method gets a point from the locator.
vtkIdType vtkImageMarchingCubes::GetLocatorPoint(int cellX, int cellY, int edge)
{
// Get the correct position in the array.
vtkIdType *ptr = this->GetLocatorPointer(cellX, cellY, edge);
return *ptr;
}
//----------------------------------------------------------------------------
// This method returns a pointer to an ID from a cube and an edge.
vtkIdType *vtkImageMarchingCubes::GetLocatorPointer(int cellX,int cellY,int edge)
{
// Remove redundant edges (shared by more than one cube).
// Take care of shared edges
switch (edge)
{
case 9: ++cellX; edge = 8; break;
case 10: ++cellY; edge = 8; break;
case 11: ++cellX; ++cellY; edge = 8; break;
case 5: ++cellX; edge = 7; break;
case 6: ++cellY; edge = 4; break;
case 1: ++cellX; edge = 3; break;
case 2: ++cellY; edge = 0; break;
}
// relative to min and max.
cellX -= this->LocatorMinX;
cellY -= this->LocatorMinY;
// compute new indexes for edges (0 to 4)
// must be compatible with LocatorIncrementZ.
if (edge == 7)
{
edge = 1;
}
if (edge == 8)
{
edge = 2;
}
// return correct pointer
return this->LocatorPointIds + edge
+ (cellX + cellY * static_cast<vtkIdType>(this->LocatorDimX)) * 5;
}
//----------------------------------------------------------------------------
int vtkImageMarchingCubes::FillInputPortInformation(int, vtkInformation *info)
{
info->Set(vtkAlgorithm::INPUT_REQUIRED_DATA_TYPE(), "vtkImageData");
return 1;
}
//----------------------------------------------------------------------------
void vtkImageMarchingCubes::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os,indent);
this->ContourValues->PrintSelf(os,indent.GetNextIndent());
os << indent << "ComputeScalars: " << this->ComputeScalars << "\n";
os << indent << "ComputeNormals: " << this->ComputeNormals << "\n";
os << indent << "ComputeGradients: " << this->ComputeGradients << "\n";
os << indent << "InputMemoryLimit: " << this->InputMemoryLimit <<"K bytes\n";
}
|