1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
|
/*=========================================================================
Program: Visualization Toolkit
Module: vtkQuadraturePointsUtilities.hxx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#ifndef vtkQuadraturePointsUtilities_hxx
#define vtkQuadraturePointsUtilities_hxx
#include "vtkQuadratureSchemeDefinition.h"
#include "vtkDoubleArray.h"
#include "vtkFloatArray.h"
#include "vtkUnstructuredGrid.h"
namespace {
// Description:
// For all cells in the input "usg", for a specific array
// "V" interpolate to quadrature points using the given
// dictionary "dict" into "interpolated". Additionally if
// "indices" is not 0 then track the indices of where the
// values from each cell start as well. In the case of
// an error the return is 0.
template<class TV, class TI>
int Interpolate(
vtkUnstructuredGrid *usg,
const vtkIdType nCellsUsg,
TV *pV,
const int nCompsV,
vtkQuadratureSchemeDefinition **dict,
vtkDoubleArray *interpolated,
TI *indices)
{
// Walk cells.
vtkIdType currentIndex=0;
for (vtkIdType cellId=0; cellId<nCellsUsg; ++cellId)
{
// Point to the start of the data associated with this cell.
if (indices!=NULL)
{
indices[cellId]=static_cast<TI>(currentIndex);
}
// Grab the cell's associated shape function definition.
int cellType=usg->GetCellType(cellId);
vtkQuadratureSchemeDefinition *def=dict[cellType];
if (def==NULL)
{
// no quadrature scheme been specified for this cell type
// skipping the cell.
continue;
}
vtkIdType nNodes=def->GetNumberOfNodes();
int nQPts=def->GetNumberOfQuadraturePoints();
// Grab the cell's node ids.
vtkIdType *cellNodeIds=0;
usg->GetCellPoints(cellId,nNodes,cellNodeIds);
// Walk quadrature points.
for (int qPtId=0; qPtId<nQPts; ++qPtId)
{
// Grab the result and initialize.
double *r=interpolated->WritePointer(currentIndex,nCompsV);
for (int q=0; q<nCompsV; ++q)
{
r[q]=0.0;
}
// Grab shape function weights.
const double *N=def->GetShapeFunctionWeights(qPtId);
// Walk the cell's nodes.
for (int j=0; j<nNodes; ++j)
{
vtkIdType tupIdx=cellNodeIds[j]*nCompsV;
// Apply shape function weights.
for (int q=0; q<nCompsV; ++q)
{
r[q]+=N[j]*pV[tupIdx+q];
}
}
// Update the result index.
currentIndex+=nCompsV;
}
}
return 1;
}
// Description:
// Dispatch helper, descides what type of indices we are working with
template<class TV>
int Interpolate(
vtkUnstructuredGrid *usg,
const vtkIdType nCellsUsg,
TV *pV,
const int nCompsV,
vtkQuadratureSchemeDefinition **dict,
vtkDoubleArray *interpolated,
void *indices,
int indexType)
{
switch(indexType)
{
vtkTemplateMacro(
return Interpolate(usg,nCellsUsg,pV,nCompsV,dict,interpolated,(VTK_TT*)indices);
);
}
return 0;
}
//------------------------------------------------------------------------------
template <class T>
void ApplyShapeFunction(double *r,double N_j,T *A,int nComps)
{
for (int q=0; q<nComps; ++q)
{
r[q]+=N_j*A[q];
}
}
};
#endif
|