1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
|
/*=========================================================================
Program: Visualization Toolkit
Module: vtkRecursiveDividingCubes.cxx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkRecursiveDividingCubes.h"
#include "vtkCellArray.h"
#include "vtkDoubleArray.h"
#include "vtkImageData.h"
#include "vtkInformation.h"
#include "vtkInformationVector.h"
#include "vtkMath.h"
#include "vtkObjectFactory.h"
#include "vtkPointData.h"
#include "vtkPolyData.h"
#include "vtkVoxel.h"
vtkStandardNewMacro(vtkRecursiveDividingCubes);
vtkRecursiveDividingCubes::vtkRecursiveDividingCubes()
{
this->Value = 0.0;
this->Distance = 0.1;
this->Increment = 1;
this->Count = 0;
this->Voxel = vtkVoxel::New();
}
vtkRecursiveDividingCubes::~vtkRecursiveDividingCubes()
{
this->Voxel->Delete();
}
static double X[3]; //origin of current voxel
static double Spacing[3]; //spacing of current voxel
static double Normals[8][3]; //voxel normals
static vtkPoints *NewPts; //points being generated
static vtkDoubleArray *NewNormals; //points being generated
static vtkCellArray *NewVerts; //verts being generated
int vtkRecursiveDividingCubes::RequestData(
vtkInformation *vtkNotUsed(request),
vtkInformationVector **inputVector,
vtkInformationVector *outputVector)
{
// get the info objects
vtkInformation *inInfo = inputVector[0]->GetInformationObject(0);
vtkInformation *outInfo = outputVector->GetInformationObject(0);
// get the input and output
vtkImageData *input = vtkImageData::SafeDownCast(
inInfo->Get(vtkDataObject::DATA_OBJECT()));
vtkPolyData *output = vtkPolyData::SafeDownCast(
outInfo->Get(vtkDataObject::DATA_OBJECT()));
int i, j, k;
vtkIdType idx;
vtkDataArray *inScalars;
vtkIdList *voxelPts;
double origin[3];
int dim[3], jOffset, kOffset, sliceSize;
int above, below, vertNum;
vtkDoubleArray *voxelScalars;
vtkDebugMacro(<< "Executing recursive dividing cubes...");
//
// Initialize self; check input; create output objects
//
this->Count = 0;
// make sure we have scalar data
if ( ! (inScalars = input->GetPointData()->GetScalars()) )
{
vtkErrorMacro(<<"No scalar data to contour");
return 1;
}
// just deal with volumes
if ( input->GetDataDimension() != 3 )
{
vtkErrorMacro("Bad input: only treats 3D structured point datasets");
return 1;
}
input->GetDimensions(dim);
input->GetSpacing(Spacing);
input->GetOrigin(origin);
// creating points
NewPts = vtkPoints::New();
NewPts->Allocate(50000,100000);
NewNormals = vtkDoubleArray::New();
NewNormals->SetNumberOfComponents(3);
NewNormals->Allocate(50000,100000);
NewVerts = vtkCellArray::New();
NewVerts->Allocate(50000,100000);
NewVerts->InsertNextCell(0); //temporary cell count
voxelPts = vtkIdList::New();
voxelPts->Allocate(8);
voxelPts->SetNumberOfIds(8);
voxelScalars = vtkDoubleArray::New();
voxelScalars->SetNumberOfComponents(inScalars->GetNumberOfComponents());
voxelScalars->Allocate(8*inScalars->GetNumberOfComponents());
//
// Loop over all cells checking to see which straddle the specified value.
// Since we know that we are working with a volume, can create
// appropriate data directly.
//
sliceSize = dim[0] * dim[1];
for ( k=0; k < (dim[2]-1); k++)
{
kOffset = k*sliceSize;
X[2] = origin[2] + k*Spacing[2];
for ( j=0; j < (dim[1]-1); j++)
{
jOffset = j*dim[0];
X[1] = origin[1] + j*Spacing[1];
for ( i=0; i < (dim[0]-1); i++)
{
idx = i + jOffset + kOffset;
X[0] = origin[0] + i*Spacing[0];
// get point ids of this voxel
voxelPts->SetId(0, idx);
voxelPts->SetId(1, idx + 1);
voxelPts->SetId(2, idx + dim[0]);
voxelPts->SetId(3, idx + dim[0] + 1);
voxelPts->SetId(4, idx + sliceSize);
voxelPts->SetId(5, idx + sliceSize + 1);
voxelPts->SetId(6, idx + sliceSize + dim[0]);
voxelPts->SetId(7, idx + sliceSize + dim[0] + 1);
// get scalars of this voxel
inScalars->GetTuples(voxelPts,voxelScalars);
// loop over 8 points of voxel to check if cell straddles value
for ( above=below=0, vertNum=0; vertNum < 8; vertNum++ )
{
if ( voxelScalars->GetComponent(vertNum,0) >= this->Value )
{
above = 1;
}
else
{
below = 1;
}
if ( above && below ) // recursively generate points
{ //compute voxel normals and subdivide
input->GetPointGradient(i,j,k, inScalars, Normals[0]);
input->GetPointGradient(i+1,j,k, inScalars, Normals[1]);
input->GetPointGradient(i,j+1,k, inScalars, Normals[2]);
input->GetPointGradient(i+1,j+1,k, inScalars, Normals[3]);
input->GetPointGradient(i,j,k+1, inScalars, Normals[4]);
input->GetPointGradient(i+1,j,k+1, inScalars, Normals[5]);
input->GetPointGradient(i,j+1,k+1, inScalars, Normals[6]);
input->GetPointGradient(i+1,j+1,k+1, inScalars, Normals[7]);
this->SubDivide(X, Spacing, voxelScalars->GetPointer(0));
}
}
}
}
}
voxelPts->Delete();
voxelScalars->Delete();
NewVerts->UpdateCellCount(NewPts->GetNumberOfPoints());
vtkDebugMacro(<< "Created " << NewPts->GetNumberOfPoints() << " points");
//
// Update ourselves and release memory
//
output->SetPoints(NewPts);
NewPts->Delete();
output->SetVerts(NewVerts);
NewVerts->Delete();
output->GetPointData()->SetNormals(NewNormals);
NewNormals->Delete();
output->Squeeze();
return 1;
}
static int ScalarInterp[8][8] = {{0,8,12,24,16,22,20,26},
{8,1,24,13,22,17,26,21},
{12,24,2,9,20,26,18,23},
{24,13,9,3,26,21,23,19},
{16,22,20,26,4,10,14,25},
{22,17,26,21,10,5,25,15},
{20,26,18,23,14,25,6,11},
{26,21,23,19,25,15,11,7}};
#define VTK_POINTS_PER_POLY_VERTEX 10000
void vtkRecursiveDividingCubes::SubDivide(double origin[3], double h[3],
double values[8])
{
int i;
double hNew[3];
for (i=0; i<3; i++)
{
hNew[i] = h[i] / 2.0;
}
// if subdivided far enough, create point and end termination
if ( h[0] < this->Distance && h[1] < this->Distance && h[2] < this->Distance )
{
vtkIdType id;
double x[3], n[3];
double p[3], w[8];
for (i=0; i <3; i++)
{
x[i] = origin[i] + hNew[i];
}
if ( ! (this->Count++ % this->Increment) ) //add a point
{
id = NewPts->InsertNextPoint(x);
NewVerts->InsertCellPoint(id);
for (i=0; i<3; i++)
{
p[i] = (x[i] - X[i]) / Spacing[i];
}
this->Voxel->InterpolationFunctions(p,w);
for (n[0]=n[1]=n[2]=0.0, i=0; i<8; i++)
{
n[0] += Normals[i][0]*w[i];
n[1] += Normals[i][1]*w[i];
n[2] += Normals[i][2]*w[i];
}
vtkMath::Normalize(n);
NewNormals->InsertTuple(id,n);
if ( !(NewPts->GetNumberOfPoints() % VTK_POINTS_PER_POLY_VERTEX) )
{
vtkDebugMacro(<<"point# "<<NewPts->GetNumberOfPoints());
}
}
return;
}
// otherwise, create eight sub-voxels and recurse
else
{
int j, k, idx, above, below, ii;
double x[3];
double newValues[8];
double s[27], scalar;
for (i=0; i<8; i++)
{
s[i] = values[i];
}
s[8] = (s[0] + s[1]) / 2.0; // edge verts
s[9] = (s[2] + s[3]) / 2.0;
s[10] = (s[4] + s[5]) / 2.0;
s[11] = (s[6] + s[7]) / 2.0;
s[12] = (s[0] + s[2]) / 2.0;
s[13] = (s[1] + s[3]) / 2.0;
s[14] = (s[4] + s[6]) / 2.0;
s[15] = (s[5] + s[7]) / 2.0;
s[16] = (s[0] + s[4]) / 2.0;
s[17] = (s[1] + s[5]) / 2.0;
s[18] = (s[2] + s[6]) / 2.0;
s[19] = (s[3] + s[7]) / 2.0;
s[20] = (s[0] + s[2] + s[4] + s[6]) / 4.0; // face verts
s[21] = (s[1] + s[3] + s[5] + s[7]) / 4.0;
s[22] = (s[0] + s[1] + s[4] + s[5]) / 4.0;
s[23] = (s[2] + s[3] + s[6] + s[7]) / 4.0;
s[24] = (s[0] + s[1] + s[2] + s[3]) / 4.0;
s[25] = (s[4] + s[5] + s[6] + s[7]) / 4.0;
s[26] = (s[0] + s[1] + s[2] + s[3] + s[4] + s[5] + s[6] + s[7]) / 8.0; //middle
for (k=0; k < 2; k++)
{
x[2] = origin[2] + k*hNew[2];
for (j=0; j < 2; j++)
{
x[1] = origin[1] + j*hNew[1];
for (i=0; i < 2; i++)
{
idx = i + j*2 + k*4;
x[0] = origin[0] + i*hNew[0];
for (above=below=0,ii=0; ii<8; ii++)
{
scalar = s[ScalarInterp[idx][ii]];
if ( scalar >= this->Value )
{
above = 1;
}
else
{
below = 1;
}
newValues[ii] = scalar;
}
if ( above && below )
{
this->SubDivide(x, hNew, newValues);
}
}
}
}
}
}
int vtkRecursiveDividingCubes::FillInputPortInformation(int, vtkInformation *info)
{
info->Set(vtkAlgorithm::INPUT_REQUIRED_DATA_TYPE(), "vtkImageData");
return 1;
}
void vtkRecursiveDividingCubes::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os,indent);
os << indent << "Value: " << this->Value << "\n";
os << indent << "Distance: " << this->Distance << "\n";
os << indent << "Increment: " << this->Increment << "\n";
}
|