File: vtkVolumeContourSpectrumFilter.cxx

package info (click to toggle)
vtk7 7.1.1%2Bdfsg1-12
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 125,776 kB
  • sloc: cpp: 1,539,582; ansic: 106,521; python: 78,038; tcl: 47,013; xml: 8,142; yacc: 5,040; java: 4,439; perl: 3,132; lex: 1,926; sh: 1,500; makefile: 122; objc: 83
file content (321 lines) | stat: -rw-r--r-- 11,170 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkVolumeContourSpectrumFilter.cxx

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
#include "vtkVolumeContourSpectrumFilter.h"

#include "vtkDataArray.h"
#include "vtkDataSetAttributes.h"
#include "vtkEdgeListIterator.h"
#include "vtkIdList.h"
#include "vtkInformation.h"
#include "vtkInformationVector.h"
#include "vtkObjectFactory.h"
#include "vtkPointData.h"
#include "vtkReebGraph.h"
#include "vtkTable.h"
#include "vtkTetra.h"
#include "vtkUnstructuredGrid.h"
#include "vtkVariantArray.h"

vtkStandardNewMacro(vtkVolumeContourSpectrumFilter);

//----------------------------------------------------------------------------
vtkVolumeContourSpectrumFilter::vtkVolumeContourSpectrumFilter()
{
  this->SetNumberOfInputPorts(2);
  this->ArcId = 0;
  this->FieldId = 0;
  this->NumberOfSamples = 100;
}

//----------------------------------------------------------------------------
vtkVolumeContourSpectrumFilter::~vtkVolumeContourSpectrumFilter()
{
}

//----------------------------------------------------------------------------
int vtkVolumeContourSpectrumFilter::FillInputPortInformation(
  int portNumber, vtkInformation *info)
{
  switch(portNumber)
  {
    case 0:
      info->Remove(vtkAlgorithm::INPUT_REQUIRED_DATA_TYPE());
      info->Append(
        vtkAlgorithm::INPUT_REQUIRED_DATA_TYPE(), "vtkUnstructuredGrid");
      break;
    case 1:
      info->Remove(vtkAlgorithm::INPUT_REQUIRED_DATA_TYPE());
      info->Append(vtkAlgorithm::INPUT_REQUIRED_DATA_TYPE(), "vtkReebGraph");
      break;
  }
  return 1;
}

//----------------------------------------------------------------------------
int vtkVolumeContourSpectrumFilter::FillOutputPortInformation(int vtkNotUsed(portNumber), vtkInformation *info)
{

  info->Set(vtkDataObject::DATA_TYPE_NAME(), "vtkTable");

  return 1;
}

//----------------------------------------------------------------------------
void vtkVolumeContourSpectrumFilter::PrintSelf(ostream& os, vtkIndent indent)
{
  this->Superclass::PrintSelf(os,indent);
  os << indent << "Arc Id: " << this->ArcId << "\n";
  os << indent << "Number of Samples: " << this->NumberOfSamples << "\n";
  os << indent << "Field Id: " << this->FieldId << "\n";
}

//----------------------------------------------------------------------------
vtkTable* vtkVolumeContourSpectrumFilter::GetOutput()
{
  return vtkTable::SafeDownCast(this->GetOutputDataObject(0));
}

//----------------------------------------------------------------------------
int vtkVolumeContourSpectrumFilter::RequestData(vtkInformation* vtkNotUsed(request), vtkInformationVector **inputVector, vtkInformationVector *outputVector)
{

  vtkInformation  *inInfoMesh = inputVector[0]->GetInformationObject(0),
                  *inInfoGraph = inputVector[1]->GetInformationObject(0);

  if ((!inInfoMesh)||(!inInfoGraph))
  {
    return 0;
  }
  vtkUnstructuredGrid *inputMesh = vtkUnstructuredGrid::SafeDownCast(
    inInfoMesh->Get(vtkUnstructuredGrid::DATA_OBJECT()));

  vtkReebGraph *inputGraph = vtkReebGraph::SafeDownCast(
    inInfoGraph->Get(vtkReebGraph::DATA_OBJECT()));

  if ((inputMesh)&&(inputGraph))
  {
    vtkInformation  *outInfo = outputVector->GetInformationObject(0);
    vtkTable     *output = vtkTable::SafeDownCast(
      outInfo->Get(vtkDataObject::DATA_OBJECT()));

    if(output)
    {

      // Retrieve the arc given by ArcId
      vtkVariantArray *edgeInfo = vtkArrayDownCast<vtkVariantArray>(
        inputGraph->GetEdgeData()->GetAbstractArray("Vertex Ids"));
      // Invalid Reeb graph (no information associated to the edges)
      if(!edgeInfo)
        return 0;

      // Retrieve the information to get the critical vertices Ids
      vtkDataArray *criticalPointIds = vtkArrayDownCast<vtkDataArray>(
        inputGraph->GetVertexData()->GetAbstractArray("Vertex Ids"));
      // Invalid Reeb graph (no information associated to the vertices)
      if(!criticalPointIds)
        return 0;

      vtkAbstractArray *vertexList = edgeInfo->GetPointer(ArcId)->ToArray();

      // the arc defined by ArcId does not exist (out of bound?)
      if(!vertexList)
        return 0;

      vtkDataArray *scalarField =
        inputMesh->GetPointData()->GetArray(FieldId);
      if(!scalarField)
        return 0;

      // parse the input vertex list (region in which the connectivity of the
      // level sets does not change) and compute the area signature
      double cumulativeVolume = 0;
      std::vector<double> scalarValues, volumeSignature;
      std::vector<int>    vertexIds;
      std::vector<bool>   visitedTetrahedra;

      visitedTetrahedra.resize(inputMesh->GetNumberOfCells());
      vertexIds.resize(vertexList->GetNumberOfTuples() + 2);
      scalarValues.resize(vertexIds.size());
      volumeSignature.resize(vertexIds.size());

      // include the critical points in the computation
      //  - iterates through the edges of the Reeb graph until we found the arc
      //  we're looking for
      //  - retrieve the Source and Target of the edge
      //  - pick the corresponding mesh vertex Ids in the VertexData.
      std::pair<int, int> criticalPoints;
      vtkEdgeListIterator *eIt = vtkEdgeListIterator::New();
      inputGraph->GetEdges(eIt);

      do{
        vtkEdgeType e = eIt->Next();
        if(e.Id == ArcId)
        {
          if((criticalPointIds->GetTuple(e.Source))
            &&(criticalPointIds->GetTuple(e.Target)))
          {
            criticalPoints.first =
              (int) *(criticalPointIds->GetTuple(e.Source));
            criticalPoints.second =
              (int) *(criticalPointIds->GetTuple(e.Target));
          }
          else
            // invalid Reeb graph
            return 0;
        }
      }while(eIt->HasNext());

      eIt->Delete();

      vertexIds[0] = criticalPoints.first;
      vertexIds[vertexIds.size() - 1] = criticalPoints.second;
      // NB: the vertices of vertexList are already in sorted order of function
      // value.
      for(int i = 0; i < vertexList->GetNumberOfTuples(); i++)
        vertexIds[i + 1] = vertexList->GetVariantValue(i).ToInt();

      // mark all the input triangles as non visited.
      for(unsigned int i = 0; i < visitedTetrahedra.size(); i++)
        visitedTetrahedra[i] = false;

      // now do the parsing
      double  min = scalarField->GetComponent(vertexIds[0], 0),
              max = scalarField->GetComponent(vertexIds[vertexIds.size()-1], 0);
      for(unsigned int i = 0; i < vertexIds.size(); i++)
      {
        scalarValues[i] = scalarField->GetComponent(vertexIds[i], 0);

        vtkIdList *starTetrahedronList = vtkIdList::New();
        inputMesh->GetPointCells(vertexIds[i], starTetrahedronList);

        for(int j = 0; j < starTetrahedronList->GetNumberOfIds(); j++)
        {
          vtkIdType tId = starTetrahedronList->GetId(j);
          if(!visitedTetrahedra[tId])
          {
            vtkTetra *t = vtkTetra::SafeDownCast(inputMesh->GetCell(tId));

            if((scalarField->GetComponent(t->GetPointIds()->GetId(0), 0)
              <= scalarValues[i])
              &&
              (scalarField->GetComponent(t->GetPointIds()->GetId(1), 0)
              <= scalarValues[i])
              &&
              (scalarField->GetComponent(t->GetPointIds()->GetId(2), 0)
              <= scalarValues[i])
              &&
              (scalarField->GetComponent(t->GetPointIds()->GetId(3), 0)
              <= scalarValues[i])
              &&
              (scalarField->GetComponent(t->GetPointIds()->GetId(0), 0) >= min)
              &&
              (scalarField->GetComponent(t->GetPointIds()->GetId(1), 0) >= min)
              &&
              (scalarField->GetComponent(t->GetPointIds()->GetId(2), 0) >= min)
              &&
              (scalarField->GetComponent(t->GetPointIds()->GetId(3), 0) >= min)
              )
            {
              // make sure the triangle is strictly in the covered function
              // span.

              double p0[3], p1[3], p2[3], p3[3];
              inputMesh->GetPoint(t->GetPointIds()->GetId(0), p0);
              inputMesh->GetPoint(t->GetPointIds()->GetId(1), p1);
              inputMesh->GetPoint(t->GetPointIds()->GetId(2), p2);
              inputMesh->GetPoint(t->GetPointIds()->GetId(3), p3);
              cumulativeVolume += vtkTetra::ComputeVolume(p0, p1, p2, p3);

              visitedTetrahedra[tId] = true;
            }
          }
        }
        volumeSignature[i] = cumulativeVolume;
        starTetrahedronList->Delete();
      }

      // now adjust to the desired sampling
      std::vector<std::pair<int, double> > samples(NumberOfSamples);
      unsigned int pos = 0;
      for(int i = 0; i < NumberOfSamples; i++)
      {
        samples[i].first = 0;
        samples[i].second = 0;
        while((scalarValues[pos] < min +
           (i+1.0)*((max - min)/((double)NumberOfSamples)))
           &&(pos < scalarValues.size()))
        {
            samples[i].first++;
            samples[i].second += volumeSignature[pos];
            pos++;
        }
        if(samples[i].first) samples[i].second /= samples[i].first;
      }

      // no value at the start? put 0
      if(!samples[0].first)
      {
        samples[0].first = 1;
        samples[0].second = 0;
      }
      // no value at the end? put the cumulative area
      if(!samples[samples.size() - 1].first)
      {
        samples[samples.size() - 1].first = 1;
        samples[samples.size() - 1].second = cumulativeVolume;
      }

      // fill out the blanks
      int lastSample = 0;
      for(int i = 0; i < NumberOfSamples; i++)
      {
        if(!samples[i].first)
        {
          // not enough vertices in the region for the number of desired
          // samples. we have to interpolate.

          // first, search for the next valid sample
          int nextSample = i;
          for(; nextSample < NumberOfSamples; nextSample++)
          {
            if(samples[nextSample].first) break;
          }

          // next interpolate
          samples[i].second = samples[lastSample].second +
            (i - lastSample)
            *(samples[nextSample].second - samples[lastSample].second)
            /(nextSample - lastSample);

        }
        else lastSample = i;
      }

      // now prepare the output
      vtkVariantArray *outputSignature = vtkVariantArray::New();
      outputSignature->SetNumberOfTuples(samples.size());
      for(unsigned int i = 0; i < samples.size(); i++)
      {
        outputSignature->SetValue(i, samples[i].second);
      }
      output->Initialize();
      output->AddColumn(outputSignature);
      outputSignature->Delete();
    }

    return 1;
  }
  return 0;
}