File: vtkVoxelContoursToSurfaceFilter.cxx

package info (click to toggle)
vtk7 7.1.1%2Bdfsg1-12
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 125,776 kB
  • sloc: cpp: 1,539,582; ansic: 106,521; python: 78,038; tcl: 47,013; xml: 8,142; yacc: 5,040; java: 4,439; perl: 3,132; lex: 1,926; sh: 1,500; makefile: 122; objc: 83
file content (666 lines) | stat: -rw-r--r-- 20,957 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkVoxelContoursToSurfaceFilter.cxx

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
#include "vtkVoxelContoursToSurfaceFilter.h"

#include "vtkAppendPolyData.h"
#include "vtkCellArray.h"
#include "vtkContourFilter.h"
#include "vtkInformation.h"
#include "vtkInformationVector.h"
#include "vtkObjectFactory.h"
#include "vtkPointData.h"
#include "vtkPolyData.h"
#include "vtkStructuredPoints.h"

vtkStandardNewMacro(vtkVoxelContoursToSurfaceFilter);

vtkVoxelContoursToSurfaceFilter::vtkVoxelContoursToSurfaceFilter()
{
  this->MemoryLimitInBytes = 10000000;
  this->Spacing[0]         = 1.0;
  this->Spacing[1]         = 1.0;
  this->Spacing[2]         = 1.0;
  this->LineList           = new double[4*1000];
  this->LineListLength     = 0;
  this->LineListSize       = 1000;
  this->SortedXList        = NULL;
  this->SortedYList        = NULL;
  this->WorkingList        = NULL;
  this->IntersectionList   = NULL;
  this->SortedListSize     = 0;
}

vtkVoxelContoursToSurfaceFilter::~vtkVoxelContoursToSurfaceFilter()
{
  delete [] this->LineList;
  delete [] this->SortedXList;
  delete [] this->SortedYList;
  delete [] this->WorkingList;
  delete [] this->IntersectionList;
}

void vtkVoxelContoursToSurfaceFilter::AddLineToLineList( double x1, double y1,
                                                   double x2, double y2 )
{
  // Do we need to increase the size of our list?
  if ( this->LineListLength >= this->LineListSize )
  {
    // Double the space we had before
    double *newList = new double[this->LineListSize*4*2];
    memcpy( newList, this->LineList, 4*this->LineListSize*sizeof(double) );
    delete [] this->LineList;
    this->LineList = newList;
    this->LineListSize *= 2;
  }

  // Now we are sure we have space - add the line
  this->LineList[4*this->LineListLength + 0] = x1;
  this->LineList[4*this->LineListLength + 1] = y1;
  this->LineList[4*this->LineListLength + 2] = x2;
  this->LineList[4*this->LineListLength + 3] = y2;
  this->LineListLength++;
}

void vtkVoxelContoursToSurfaceFilter::SortLineList()
{
  int     i, j;
  double   tmp[4];
  double   tmpval;


  // Make sure we have enough space in our sorted list
  if ( this->SortedListSize < this->LineListLength )
  {
    delete [] this->SortedXList;
    delete [] this->SortedYList;
    delete [] this->WorkingList;
    delete [] this->IntersectionList;

    this->SortedXList = new double[4*this->LineListLength];
    this->SortedYList = new double[4*this->LineListLength];
    this->SortedListSize = this->LineListLength;

    // Create the space we'll need for our working list of indices
    // The is the list of lines that we are currently considering
    // for intersections. Lines move in then out of the list as
    // we pass the first then the second endpoint. This will be
    // used during the CastXLines and CastYLines methods, and is
    // the same size as the number of lines.
    this->WorkingList = new int[this->LineListLength];

    // Create the space we'll need for the intersection list
    // There can't be more intersections than there are possible
    // lines. Although it is highly doubtful we'll actually use
    // all this space, it isn't much and it makes the code simpler
    // not to have to worry about exceeding the bounds. This will be
    // used during the CastXLines and CastYLines methods, and is
    // the same size as the number of lines.
    this->IntersectionList = new double[this->LineListLength];
  }

  // Copy the lines into the lists
  memcpy( this->SortedXList, this->LineList,
          4*this->LineListLength*sizeof(double) );
  memcpy( this->SortedYList, this->LineList,
          4*this->LineListLength*sizeof(double) );

  // Now sort on x and y
  // Use a simple bubble sort - will improve if necessary
  for ( i = 0; i < this->LineListLength; i++ )
  {
    // swap x entry if necessary to keep min x the first endpoint
    if ( this->SortedXList[4*i + 0] > this->SortedXList[4*i + 2] )
    {
      tmpval = this->SortedXList[4*i];
      this->SortedXList[4*i] = this->SortedXList[4*i + 2];
      this->SortedXList[4*i + 2] = tmpval;
      tmpval = this->SortedXList[4*i + 1];
      this->SortedXList[4*i + 1] = this->SortedXList[4*i + 3];
      this->SortedXList[4*i + 3] = tmpval;
    }

    // swap y entry if necessary to keep min y the first endpoint
    if ( this->SortedYList[4*i + 1] > this->SortedYList[4*i + 3] )
    {
      tmpval = this->SortedYList[4*i];
      this->SortedYList[4*i] = this->SortedYList[4*i + 2];
      this->SortedYList[4*i + 2] = tmpval;
      tmpval = this->SortedYList[4*i + 1];
      this->SortedYList[4*i + 1] = this->SortedYList[4*i + 3];
      this->SortedYList[4*i + 3] = tmpval;
    }

    // Sort x list
    for ( j = i; j > 0; j-- )
    {
      if ( this->SortedXList[j*4] < this->SortedXList[(j-1)*4] )
      {
        memcpy( tmp, this->SortedXList + j*4, 4*sizeof(double) );
        memcpy( this->SortedXList + j*4,
                this->SortedXList + (j-1)*4, 4*sizeof(double) );
        memcpy( this->SortedXList + (j-1)*4, tmp, 4*sizeof(double) );
      }
      else
      {
        break;
      }
    }

    // Sort y list
    for ( j = i; j > 0; j-- )
    {
      if ( this->SortedYList[j*4+1] < this->SortedYList[(j-1)*4+1] )
      {
        memcpy( tmp, this->SortedYList + j*4, 4*sizeof(double) );
        memcpy( this->SortedYList + j*4, this->SortedYList + (j-1)*4,
                4*sizeof(double) );
        memcpy( this->SortedYList + (j-1)*4, tmp, 4*sizeof(double) );
      }
      else
      {
        break;
      }
    }
  }
}


void vtkVoxelContoursToSurfaceFilter::CastLines( float *slicePtr,
                                                 double gridOrigin[3],
                                                 int gridSize[3],
                                                 int type )
{
  double   axis1, axis2;
  double   d1, d2;
  int     index;
  int     i, j;
  double   tmp;
  double   *line;
  float   *currSlicePtr;
  int     currSlice;
  int     currentIntersection;
  double   sign;
  double   *sortedList;
  double   low1, low2, high1, high2;
  int     increment1, increment2;
  int     offset1, offset2, offset3, offset4;

  // this is the x direction
  if ( type == 0 )
  {
    low1 = gridOrigin[0];
    high1 = gridOrigin[0] + (double)gridSize[0];
    low2 = gridOrigin[1];
    high2 = gridOrigin[1] + (double)gridSize[1];
    increment1 = gridSize[0];
    increment2 = 1;
    sortedList = this->SortedXList;
    offset1 = 0;
    offset2 = 2;
    offset3 = 1;
    offset4 = 3;
  }
  // This is the y direction
  else
  {
    low1 = gridOrigin[1];
    high1 = gridOrigin[1] + (double)gridSize[1];
    low2 = gridOrigin[0];
    high2 = gridOrigin[0] + (double)gridSize[0];
    increment1 = 1;
    increment2 = gridSize[0];
    sortedList = this->SortedYList;
    offset1 = 1;
    offset2 = 3;
    offset3 = 0;
    offset4 = 2;
  }

  // Initialize the working list to nothing. We will start
  // looking at index = 0 for the next line to add to the
  // working list
  this->WorkingListLength = 0;
  index = 0;

  // Loop through the x or y lines
  for ( axis1 = low1, currSlice = 0; axis1 < high1; axis1 += 1.0, currSlice++ )
  {
    // Initialize the intersection list to nothing
    this->IntersectionListLength = 0;

    // Add lines to the working list if necessary
    for ( ; index < this->LineListLength; index++ )
    {
      if ( sortedList[4*index + offset1] < axis1 )
      {
        this->WorkingList[this->WorkingListLength] = index;
        this->WorkingListLength++;
      }
      else
      {
        break;
      }
    }

    // Do the intersections, removing lines from the
    // working list if necessary
    for ( i = 0; i < this->WorkingListLength; i++ )
    {
      line = sortedList + 4*this->WorkingList[i];

      // Yes, it intersects, add it to the intersection list
      if ( line[offset1] < axis1 && line[offset2] > axis1 )
      {
        // Compute the intersection distance
        // For x lines this is y = y1 + (y2 - y1)*((x - x1)/(x2 - x1))
        // For y lines this is x = x1 + (x2 - x1)*((y - y1)/(y2 - y1))
        this->IntersectionList[this->IntersectionListLength] =
          line[offset3] + (line[offset4] - line[offset3]) *
          ((axis1 - line[offset1]) / (line[offset2] - line[offset1] ));

        // Make sure this distance is sorted
        for ( j = this->IntersectionListLength; j > 0; j-- )
        {
          if ( this->IntersectionList[j] < this->IntersectionList[j-1] )
          {
            tmp = this->IntersectionList[j];
            this->IntersectionList[j] = this->IntersectionList[j-1];
            this->IntersectionList[j-1] = tmp;
          }
          else
          {
            break;
          }
        }
        this->IntersectionListLength++;
      }
      // No, it doesn't intersect, remove it from the working list
      else
      {
        for ( j = i; j < (this->WorkingListLength-1); j++ )
        {
          this->WorkingList[j] = this->WorkingList[j+1];
        }
        this->WorkingListLength--;
        i--;
      }
    }

    // Now we have all the intersections for the x or y line, in sorted
    // order. Use them to fill in distances (as long as there are
    // any)
    if ( this->IntersectionListLength )
    {
      currSlicePtr = slicePtr + currSlice*increment2;
      currentIntersection = 0;
      // We are starting outside which has a negative distance
      sign = -1.0;
      for ( axis2 = low2; axis2 < high2; axis2 += 1.0 )
      {
        while( currentIntersection < this->IntersectionListLength &&
               this->IntersectionList[currentIntersection] < axis2 )

        {
          currentIntersection++;

          // Each time we cross a line we are moving across an
          // inside/outside boundary
          sign *= -1.0;
        }
        // We are now positioned at an x or y value between currentIntersection
        // and currentIntersection - 1 (except at boundaries where we are
        // before intersection 0 or after the last intersection)

        if ( currentIntersection == 0 )
        {
          d1 = axis2 - this->IntersectionList[currentIntersection];
          *currSlicePtr = (*currSlicePtr > d1 )?(*currSlicePtr):(d1);
        }
        else if ( currentIntersection == this->IntersectionListLength )
        {
          d1 = this->IntersectionList[currentIntersection-1] - axis2;
          *currSlicePtr = (*currSlicePtr > d1 )?(*currSlicePtr):(d1);
        }
        else
        {
          d1 = axis2 - this->IntersectionList[currentIntersection-1];
          d2 = this->IntersectionList[currentIntersection] - axis2;
          d1 = ( d1 < d2 )?(d1):(d2);
          if ( type == 0 )
          {
            *currSlicePtr = sign*d1;
          }
          else
          {
            *currSlicePtr =
              (sign*(*currSlicePtr) < d1 )?(*currSlicePtr):(sign*d1);
          }
        }

        currSlicePtr += increment1;
      }
    }
  }
}

void vtkVoxelContoursToSurfaceFilter::PushDistances( float *volumePtr,
                                                     int gridSize[3],
                                                     int chunkSize )
{
  int    i, j, k;
  float  *vptr;

  // Push distances along x (both ways) and y (both ways) on each slice
  for ( k = 0; k < chunkSize; k++ )
  {
    // Do the x rows
    for ( j = 0; j < gridSize[1]; j++ )
    {
      vptr = volumePtr + k*gridSize[0]*gridSize[1] + j*gridSize[0];
      vptr++;

      // first one way
      for ( i = 1; i < gridSize[0]; i++ )
      {
        if ( *vptr > 0 &&  *(vptr-1) + 1 < *(vptr) )
        {
          *vptr = *(vptr-1) + 1;
        }
        else if ( *vptr < 0 && *(vptr-1) - 1 > *(vptr) )
        {
          *vptr = *(vptr-1) - 1;
        }
        vptr++;
      }

      vptr -= 2;
      i    -= 2;

      // then the other
      for ( ; i >= 0; i-- )
      {
        if ( *vptr > 0 &&  *(vptr+1) + 1 < *(vptr) )
        {
          *vptr = *(vptr+1) + 1;
        }
        else if ( *vptr < 0 && *(vptr+1) - 1 > *(vptr) )
        {
          *vptr = *(vptr+1) - 1;
        }
      }

    }


    // Do the y columns
    for ( i = 0; i < gridSize[0]; i++ )
    {
      vptr = volumePtr + k*gridSize[0]*gridSize[1] + i;

      vptr+=gridSize[0];

      // first one way
      for ( j = 1; j < gridSize[1]; j++ )
      {
        if ( *vptr > 0 &&  *(vptr-gridSize[0]) + 1 < *(vptr) )
        {
          *vptr = *(vptr-gridSize[0]) + 1;
        }
        else if ( *vptr < 0 && *(vptr-gridSize[0]) - 1 > *(vptr) )
        {
          *vptr = *(vptr-gridSize[0]) - 1;
        }
        vptr += gridSize[0];
      }

      vptr -= 2*gridSize[0];
      j    -= 2;

      // then the other
      for ( ; j >= 0; j-- )
      {
        if ( *vptr > 0 &&  *(vptr+gridSize[0]) + 1 < *(vptr) )
        {
          *vptr = *(vptr+gridSize[0]) + 1;
        }
        else if ( *vptr < 0 && *(vptr+gridSize[0]) - 1 > *(vptr) )
        {
          *vptr = *(vptr+gridSize[0]) - 1;
        }
      }

    }
  }
}

// Append data sets into single unstructured grid
int vtkVoxelContoursToSurfaceFilter::RequestData(
  vtkInformation *vtkNotUsed(request),
  vtkInformationVector **inputVector,
  vtkInformationVector *outputVector)
{
  // get the info objects
  vtkInformation *inInfo = inputVector[0]->GetInformationObject(0);
  vtkInformation *outInfo = outputVector->GetInformationObject(0);

  // get the input and output
  vtkPolyData *input = vtkPolyData::SafeDownCast(
    inInfo->Get(vtkDataObject::DATA_OBJECT()));
  vtkPolyData *output = vtkPolyData::SafeDownCast(
    outInfo->Get(vtkDataObject::DATA_OBJECT()));

  vtkCellArray         *inputPolys = input->GetPolys();
  int                  gridSize[3];
  double                gridOrigin[3];
  double                contourBounds[6];
  int                  chunkSize;
  int                  currentSlice, lastSlice, currentIndex;
  int                  i, j;
  int                  numberOfInputCells;
  int                  currentInputCellIndex;
  vtkIdType            npts = 0;
  vtkIdType            *pts = 0;
  double                point1[3], point2[3];
  double                currentZ;
  vtkStructuredPoints  *volume;
  float                *volumePtr, *slicePtr;
  vtkContourFilter     *contourFilter;
  vtkPolyData          *contourOutput;
  vtkAppendPolyData    *appendFilter;

  vtkDebugMacro(<<"Creating surfaces from contours");

  // Get the bounds of the input contours
  input->GetBounds( contourBounds );

  if (contourBounds[0] > contourBounds[1])
  { // empty input
    return 1;
  }

  // From the bounds, compute the grid size, and origin

  // The origin of the grid should be (-0.5, -0.5, 0.0) away from the
  // lower bounds of the contours. This is because we want the grid
  // to lie halfway between integer endpoint locations of the line
  // segments on each plane. Also, we want an extra plane on each end
  // for capping
  gridOrigin[0] = contourBounds[0] - 0.5;
  gridOrigin[1] = contourBounds[2] - 0.5;
  gridOrigin[2] = contourBounds[4] - 1.0;

  // The difference between the bounds, plus one to account a
  // sample on the first and last location, plus one to account
  // for the larger grid size ( the 0.5 unit border ) On Z, we
  // want to sample exactly on the contours so we don't need to
  // add the extra 1, but we have added two extra planes so we
  // need another 2.
  gridSize[0] = (int) (contourBounds[1] - contourBounds[0] + 2);
  gridSize[1] = (int) (contourBounds[3] - contourBounds[2] + 2);
  gridSize[2] = (int) (contourBounds[5] - contourBounds[4] + 3);

  // How many slices in a chunk? This will later be decremented
  // by one to account for the fact that the last slice in the
  // previous chuck is copied to the first slice in the next chunk.
  // Stay within memory limit. There are 4 bytes per double.
  chunkSize = this->MemoryLimitInBytes / ( gridSize[0] * gridSize[1] * 4 );
  if ( chunkSize > gridSize[2] )
  {
    chunkSize = gridSize[2];
  }

  currentSlice          = 0;
  currentZ              = contourBounds[4] - 1.0;
  currentIndex          = 0;
  lastSlice             = gridSize[2] - 1;
  numberOfInputCells    = inputPolys->GetNumberOfCells();
  currentInputCellIndex = 0;

  volume = vtkStructuredPoints::New();
  volume->SetDimensions( gridSize[0], gridSize[1], chunkSize );
  volume->SetSpacing( this->Spacing );
  volume->AllocateScalars( VTK_FLOAT, 1 );
  volumePtr =
    (float *)(volume->GetPointData()->GetScalars()->GetVoidPointer(0));


  contourFilter = vtkContourFilter::New();
  contourFilter->SetInputData( volume );
  contourFilter->SetNumberOfContours(1);
  contourFilter->SetValue( 0, 0.0 );

  appendFilter = vtkAppendPolyData::New();

  inputPolys->InitTraversal();
  inputPolys->GetNextCell( npts, pts );

  while ( currentSlice <= lastSlice )
  {
    // Make sure the origin of the volume is in the right
    // place so that the appended polydata all matches up
    // nicely.
    volume->SetOrigin( gridOrigin[0], gridOrigin[1],
                       gridOrigin[2] +
                       this->Spacing[2] * (currentSlice - (currentSlice!=0)) );

    for ( i = currentIndex; i < chunkSize; i++ )
    {
      slicePtr = volumePtr + i * gridSize[0] * gridSize[1];

      // Clear out the slice memory - set it all to a large negative
      // value indicating no surfaces are nearby, and we assume we
      // are outside of any surface
      for ( j = 0; j < gridSize[0] * gridSize[1]; j++ )
      {
        *(slicePtr+j) = -9.99e10;
      }

      // If we are past the end, don't do anything
      if ( currentSlice > lastSlice )
      {
        continue;
      }

      this->LineListLength = 0;

      // Read in the lines for the contours on this slice
      while ( currentInputCellIndex < numberOfInputCells )
      {
        // Check if we are still on the right z slice
        input->GetPoint( pts[0], point1 );
        if ( point1[2] != currentZ )
        {
          break;
        }

        // This contour is on the right z slice - add the lines
        // to our list
        for ( j = 0; j < npts; j++ )
        {
          input->GetPoint( pts[j], point1 );
          input->GetPoint( pts[(j+1)%npts], point2 );
          this->AddLineToLineList( point1[0], point1[1],
                                   point2[0], point2[1] );
        }

        inputPolys->GetNextCell( npts, pts );
        currentInputCellIndex++;
      }

      // Sort the contours in x and y
      this->SortLineList();

      // Cast lines in x and y filling in distance
      this->CastLines( slicePtr, gridOrigin, gridSize, 0 );
      this->CastLines( slicePtr, gridOrigin, gridSize, 1 );

      // Move on to the next slice
      currentSlice++;
      currentIndex++;
      currentZ += 1.0;
    }

    this->PushDistances( volumePtr, gridSize, chunkSize );

    // Update the contour filter and grab the output
    // Make a new output for it, then grab the output and
    // add it to the append filter, then delete the output
    // which is ok since it was registered by the appendFilter
    contourOutput = vtkPolyData::New();
    contourFilter->Update();
    contourOutput->ShallowCopy(contourFilter->GetOutput());
    appendFilter->AddInputData( contourOutput );
    contourOutput->Delete();


    if ( currentSlice <= lastSlice )
    {
      // Copy last slice to first slice
      memcpy( volumePtr, volumePtr + (chunkSize-1)*gridSize[0]*gridSize[1],
              sizeof(float) * gridSize[0] * gridSize[1] );

      // reset currentIndex to 1
      currentIndex = 1;
    }
  }

  appendFilter->Update();

  // Grab the appended data as the output to this filter
  output->SetPoints( appendFilter->GetOutput()->GetPoints() );
  output->SetVerts(  appendFilter->GetOutput()->GetVerts() );
  output->SetLines(  appendFilter->GetOutput()->GetLines() );
  output->SetPolys(  appendFilter->GetOutput()->GetPolys() );
  output->SetStrips( appendFilter->GetOutput()->GetStrips() );
  output->GetPointData()->PassData(appendFilter->GetOutput()->GetPointData());

  contourFilter->Delete();
  appendFilter->Delete();
  volume->Delete();

  return 1;
}


void vtkVoxelContoursToSurfaceFilter::PrintSelf(ostream& os, vtkIndent indent)
{
  this->Superclass::PrintSelf(os,indent);

  os << indent << "Memory Limit (in bytes): " <<
    this->MemoryLimitInBytes << endl;

  os << indent << "Spacing: " << this->Spacing[0] << " " <<
    this->Spacing[1] << " " << this->Spacing[2] << endl;
}