1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
|
/*=========================================================================
Program: Visualization Toolkit
Module: vtkHyperOctreeContourFilter.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
/**
* @class vtkHyperOctreeContourFilter
* @brief generate isosurfaces/isolines from scalar values
*
* vtkContourFilter is a filter that takes as input any dataset and
* generates on output isosurfaces and/or isolines. The exact form
* of the output depends upon the dimensionality of the input data.
* Data consisting of 3D cells will generate isosurfaces, data
* consisting of 2D cells will generate isolines, and data with 1D
* or 0D cells will generate isopoints. Combinations of output type
* are possible if the input dimension is mixed.
*
* To use this filter you must specify one or more contour values.
* You can either use the method SetValue() to specify each contour
* value, or use GenerateValues() to generate a series of evenly
* spaced contours. It is also possible to accelerate the operation of
* this filter (at the cost of extra memory) by using a
* vtkScalarTree. A scalar tree is used to quickly locate cells that
* contain a contour surface. This is especially effective if multiple
* contours are being extracted. If you want to use a scalar tree,
* invoke the method UseScalarTreeOn().
*
* @warning
* For unstructured data or structured grids, normals and gradients
* are not computed. Use vtkPolyDataNormals to compute the surface
* normals.
*
* @sa
* vtkMarchingContourFilter vtkKitwareContourFilter
* vtkMarchingCubes vtkSliceCubes vtkDividingCubes vtkMarchingSquares
* vtkImageMarchingCubes
*/
#ifndef vtkHyperOctreeContourFilter_h
#define vtkHyperOctreeContourFilter_h
#include "vtkFiltersHyperTreeModule.h" // For export macro
#include "vtkPolyDataAlgorithm.h"
#include "vtkContourValues.h" // Needed for inline methods
#include "vtkCutter.h" // for VTK_SORT_BY_VALUE
class vtkIncrementalPointLocator;
class vtkHyperOctree;
class vtkOrderedTriangulator;
class vtkTetra;
class vtkHyperOctreeCursor;
class vtkUnstructuredGrid;
class vtkUnsignedCharArray;
class vtkIdTypeArray;
class vtkHyperOctreeContourPointsGrabber;
class vtkBitArray;
class VTKFILTERSHYPERTREE_EXPORT vtkHyperOctreeContourFilter : public vtkPolyDataAlgorithm
{
public:
vtkTypeMacro(vtkHyperOctreeContourFilter,vtkPolyDataAlgorithm);
void PrintSelf(ostream& os, vtkIndent indent);
/**
* Construct object with initial range (0,1) and single contour value
* of 0.0.
*/
static vtkHyperOctreeContourFilter *New();
/**
* Methods to set / get contour values.
*/
/**
* Set a particular contour value at contour number i. The index i ranges
* between 0<=i<NumberOfContours.
*/
void SetValue(int i, double value)
{
this->ContourValues->SetValue(i,value);
}
/**
* Get the ith contour value.
*/
double GetValue(int i)
{
return this->ContourValues->GetValue(i);
}
/**
* Get a pointer to an array of contour values. There will be
* GetNumberOfContours() values in the list.
*/
double *GetValues()
{
return this->ContourValues->GetValues();
}
/**
* Fill a supplied list with contour values. There will be
* GetNumberOfContours() values in the list. Make sure you allocate
* enough memory to hold the list.
*/
void GetValues(double *contourValues)
{
this->ContourValues->GetValues(contourValues);
}
/**
* Set the number of contours to place into the list. You only really
* need to use this method to reduce list size. The method SetValue()
* will automatically increase list size as needed.
*/
void SetNumberOfContours(int number)
{
this->ContourValues->SetNumberOfContours(number);
}
/**
* Get the number of contours in the list of contour values.
*/
int GetNumberOfContours()
{
return this->ContourValues->GetNumberOfContours();
}
/**
* Generate numContours equally spaced contour values between specified
* range. Contour values will include min/max range values.
*/
void GenerateValues(int numContours, double range[2])
{
this->ContourValues->GenerateValues(numContours, range);
}
/**
* Generate numContours equally spaced contour values between specified
* range. Contour values will include min/max range values.
*/
void GenerateValues(int numContours, double
rangeStart, double rangeEnd)
{
this->ContourValues->GenerateValues(numContours, rangeStart, rangeEnd);
}
/**
* Modified GetMTime Because we delegate to vtkContourValues
*/
vtkMTimeType GetMTime();
//@{
/**
* Set / get a spatial locator for merging points. By default,
* an instance of vtkMergePoints is used.
*/
void SetLocator(vtkIncrementalPointLocator *locator);
vtkGetObjectMacro(Locator,vtkIncrementalPointLocator);
//@}
/**
* Create default locator. Used to create one when none is
* specified. The locator is used to merge coincident points.
*/
void CreateDefaultLocator();
protected:
vtkHyperOctreeContourFilter();
~vtkHyperOctreeContourFilter();
virtual int RequestData(vtkInformation* request,
vtkInformationVector** inputVector,
vtkInformationVector* outputVector);
virtual int RequestUpdateExtent(vtkInformation*,
vtkInformationVector**,
vtkInformationVector*);
virtual int FillInputPortInformation(int port, vtkInformation *info);
/**
* Do the recursive contour of the node pointed by Cursor.
*/
void ContourNode();
/**
* (i,j,k) are point coordinates at last level
*/
double ComputePointValue(int ptIndices[3]);
void ContourNode1D();
vtkContourValues *ContourValues;
vtkIncrementalPointLocator *Locator;
vtkIdList *CellPts; // for 2D case
vtkHyperOctree *Input;
vtkPolyData *Output;
vtkCellArray *NewVerts;
vtkCellArray *NewLines;
vtkCellArray *NewPolys;
vtkCellData *InCD;
vtkPointData *InPD;
vtkCellData *OutCD;
vtkPointData *OutPD;
vtkOrderedTriangulator *Triangulator;
vtkHyperOctreeCursor *Sibling; // to avoid allocation in the loop
vtkDoubleArray *CellScalars;
vtkTetra *Tetra;
vtkDoubleArray *TetScalars;
vtkPolygon *Polygon;
vtkHyperOctreeCursor *Cursor;
vtkHyperOctreeCursor *NeighborCursor;
vtkIdType CellTypeCounter[65536]; // up-to-65536 points per octant
vtkIdType TotalCounter;
vtkIdType TemplateCounter; // record the number of octants that succceed
// to use the template triangulator
vtkDataArray *InScalars;
vtkHyperOctreeContourPointsGrabber *Grabber;
vtkDoubleArray *PointScalars;
int SortBy;
int Iter; // iterate over contour values in case of VTK_SORT_BY_CELL
vtkLine *Line;
double LeftValue;
double LeftCoord;
friend class vtkHyperOctreeContourPointsGrabber;
private:
vtkHyperOctreeContourFilter(const vtkHyperOctreeContourFilter&) VTK_DELETE_FUNCTION;
void operator=(const vtkHyperOctreeContourFilter&) VTK_DELETE_FUNCTION;
};
#endif
|