1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
|
/*=========================================================================
Program: Visualization Toolkit
Module: vtkHyperOctreeDualGridContourFilter.cxx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkHyperOctreeDualGridContourFilter.h"
#include "vtkMarchingCubesTriangleCases.h"
#include "vtkHyperOctree.h"
#include "vtkCellArray.h"
#include "vtkCellData.h"
#include "vtkClipVolume.h"
#include "vtkExecutive.h"
#include "vtkDoubleArray.h"
#include "vtkGenericCell.h"
#include "vtkImageData.h"
#include "vtkImplicitFunction.h"
#include "vtkInformation.h"
#include "vtkInformationVector.h"
#include "vtkIntArray.h"
#include "vtkMergePoints.h"
#include "vtkObjectFactory.h"
#include "vtkPointData.h"
#include "vtkUnsignedCharArray.h"
#include "vtkUnstructuredGrid.h"
#include "vtkHyperOctreeCursor.h"
#include "vtkVoxel.h"
#include "vtkPixel.h"
#include "vtkLine.h"
#include "vtkTetra.h"
#include "vtkPolygon.h"
#include "vtkStreamingDemandDrivenPipeline.h"
#include <cmath>
#include <cassert>
#include <set>
#include "vtkBitArray.h"
#include "vtkTimerLog.h"
#include "vtkIncrementalPointLocator.h"
//----------------------------------------------------------------------------
void vtkHyperOctreeDualGridContourFilter::PrintSelf(ostream& os,
vtkIndent indent)
{
this->Superclass::PrintSelf(os,indent);
this->ContourValues->PrintSelf(os,indent.GetNextIndent());
if ( this->Locator )
{
os << indent << "Locator: " << this->Locator << "\n";
}
else
{
os << indent << "Locator: (none)\n";
}
}
class vtkHyperOctreeIdSet // Pimpl idiom
{
public:
std::set<vtkIdType> Set;
};
vtkStandardNewMacro(vtkHyperOctreeDualGridContourFilter);
//----------------------------------------------------------------------------
// Construct with user-specified implicit function; value
// set to 0.0; and generate cut scalars turned off.
vtkHyperOctreeDualGridContourFilter::vtkHyperOctreeDualGridContourFilter()
{
this->ContourValues = vtkContourValues::New();
this->Locator = NULL;
this->SetNumberOfOutputPorts(1);
// by default process active cell scalars
this->SetInputArrayToProcess(0,0,0,vtkDataObject::FIELD_ASSOCIATION_POINTS,
vtkDataSetAttributes::SCALARS);
this->Input=0;
this->Output=0;
this->NewPolys=0;
this->InPD=0;
this->OutPD=0;
this->InScalars=0;
// Create the table necessary to move the neighborhhood through the tree.
this->GenerateTraversalTable();
}
//----------------------------------------------------------------------------
vtkHyperOctreeDualGridContourFilter::~vtkHyperOctreeDualGridContourFilter()
{
this->ContourValues->Delete();
if ( this->Locator )
{
this->Locator->UnRegister(this);
this->Locator = NULL;
}
}
//----------------------------------------------------------------------------
// Overload standard modified time function. If Cut function is modified,
// then this object is modified as well.
vtkMTimeType vtkHyperOctreeDualGridContourFilter::GetMTime()
{
vtkMTimeType mTime=this->Superclass::GetMTime();
vtkMTimeType contourValuesMTime=this->ContourValues->GetMTime();
vtkMTimeType time;
mTime = ( contourValuesMTime > mTime ? contourValuesMTime : mTime );
if ( this->Locator != NULL )
{
time = this->Locator->GetMTime();
mTime = ( time > mTime ? time : mTime );
}
return mTime;
}
//----------------------------------------------------------------------------
// This table is used to move a 3x3x3 neighborhood of cursors through the tree.
void vtkHyperOctreeDualGridContourFilter::GenerateTraversalTable()
{
int xChild, yChild, zChild;
int xCursor, yCursor, zCursor;
int xNeighbor, yNeighbor, zNeighbor;
int xNewCursor, yNewCursor, zNewCursor;
int xNewChild, yNewChild, zNewChild;
int cursor, child, newCursor, newChild;
for (zChild = 0; zChild < 2; ++zChild)
{
for (yChild = 0; yChild < 2; ++yChild)
{
for (xChild = 0; xChild < 2; ++xChild)
{
for (zCursor = 0; zCursor < 2; ++zCursor)
{
for (yCursor = 0; yCursor < 2; ++yCursor)
{
for (xCursor = 0; xCursor < 2; ++xCursor)
{
// Compute the x, y, z index into the
// 4x4x4 neighborhood of children.
xNeighbor = xCursor + xChild;
yNeighbor = yCursor + yChild;
zNeighbor = zCursor + zChild;
// Separate neighbor index into Cursor/Child index.
xNewCursor = xNeighbor / 2;
yNewCursor = yNeighbor / 2;
zNewCursor = zNeighbor / 2;
xNewChild = xNeighbor - xNewCursor*2;
yNewChild = yNeighbor - yNewCursor*2;
zNewChild = zNeighbor - zNewCursor*2;
// Cursor and traversal child are for index into table.
cursor = xCursor + 2*yCursor + 4*zCursor;
child = xChild + 2*yChild + 4*zChild;
// New cursor and new child are for the value of the table.
newCursor = xNewCursor + 2*yNewCursor + 4*zNewCursor;
newChild = xNewChild + 2*yNewChild + 4*zNewChild;
this->NeighborhoodTraversalTable[8*child + cursor]
= newChild+ 8*newCursor;
}
}
}
}
}
}
}
//----------------------------------------------------------------------------
// The purpose of traversing the neighborhood / cells is to visit
// every point and have the cells connected to that point.
void vtkHyperOctreeDualGridContourFilter::TraverseNeighborhoodRecursively(
vtkHyperOctreeLightWeightCursor* neighborhood,
unsigned short *xyzIds)
{
int divide = 0;
unsigned char childrenToTraverse[8];
memset(childrenToTraverse,0,8);
if ( ! neighborhood[0].GetIsLeaf())
{ // Main cursor is a node. Traverse all children.
divide = 1;
childrenToTraverse[0] = childrenToTraverse[1]
= childrenToTraverse[2] = childrenToTraverse[3]
= childrenToTraverse[4] = childrenToTraverse[5]
= childrenToTraverse[6] = childrenToTraverse[7] = 1;
}
else
{
if (! neighborhood[1].GetIsLeaf() )
{ // x face
divide = 1;
childrenToTraverse[1] = childrenToTraverse[3]
= childrenToTraverse[5] = childrenToTraverse[7] = 1;
}
if (! neighborhood[2].GetIsLeaf() )
{ // y face
divide = 1;
childrenToTraverse[2] = childrenToTraverse[3]
= childrenToTraverse[6] = childrenToTraverse[7] = 1;
}
if (! neighborhood[4].GetIsLeaf() )
{ // z face
divide = 1;
childrenToTraverse[4] = childrenToTraverse[5]
= childrenToTraverse[6] = childrenToTraverse[7] = 1;
}
if (! neighborhood[3].GetIsLeaf() )
{ // xy edge
divide = 1;
childrenToTraverse[3] = childrenToTraverse[7] = 1;
}
if (! neighborhood[5].GetIsLeaf() )
{ // xz edge
divide = 1;
childrenToTraverse[5] = childrenToTraverse[7] = 1;
}
if (! neighborhood[6].GetIsLeaf() )
{ // xz edge
divide = 1;
childrenToTraverse[6] = childrenToTraverse[7] = 1;
}
if (! neighborhood[7].GetIsLeaf() )
{ // xyz corner
divide = 1;
childrenToTraverse[7] = 1;
}
}
if (divide)
{
int child;
int neighbor;
unsigned char tChild, tParent;
unsigned char* traversalTable = this->NeighborhoodTraversalTable;
vtkHyperOctreeLightWeightCursor newNeighborhood[8];
// Storing 4 per neighbor for efficiency.
// This might also be useful for 4d trees :)
unsigned short newXYZIds[32];
for (child = 0; child < 8; ++child)
{
if (childrenToTraverse[child])
{
unsigned short *inId;
unsigned short *outId = newXYZIds;
// Move each neighbor down to a child.
for (neighbor = 0; neighbor < 8; ++neighbor)
{
tChild = (*traversalTable) & 7;
tParent = ((*traversalTable) & 248)>>3;
inId = xyzIds+(tParent<<2); // Faster to multiply by 4 than 3.
if (neighborhood[tParent].GetIsLeaf())
{ // Parent is a leaf or this is an empty node.
// We can't traverse anymore.
// equal operator should work for this class.
newNeighborhood[neighbor] = neighborhood[tParent];
*outId++ = *inId++;
*outId++ = *inId++;
*outId++ = *inId++;
// We need an extra increment to skip over unused 4th id.
++outId;
}
else
{ // Move to child.
// equal operator should work for this class.
newNeighborhood[neighbor] = neighborhood[tParent];
newNeighborhood[neighbor].ToChild(tChild);
// Multiply parent index by two for new level.
// Increment by 1 if child requires.
*outId++ = (*inId++ << 1) | (tChild&1);
*outId++ = (*inId++ << 1) | ((tChild>>1)&1);
*outId++ = (*inId++ << 1) | ((tChild>>2)&1);
// We need an extra increment to skip over unused 4th id.
++outId;
}
++traversalTable;
}
this->TraverseNeighborhoodRecursively(newNeighborhood, newXYZIds);
}
else
{
traversalTable += 8;
}
}
return;
}
// All neighbors must be leaves.
// If we are not on the border, create the cell
// associated with the center point of the neighborhood.
this->EvaluatePoint(neighborhood, xyzIds);
}
//----------------------------------------------------------------------------
// Contour the cell assocaited with the center point.
// if it has not already been contoured.
void vtkHyperOctreeDualGridContourFilter::EvaluatePoint(
vtkHyperOctreeLightWeightCursor* neighborhood,
unsigned short* xyzIds)
{
// If any neighbor is NULL, then we are on the border.
// Do nothing if we are on a border.
// We know that neighbor 0 is never NULL.
if (!neighborhood[1].GetTree() ||
!neighborhood[2].GetTree() || !neighborhood[3].GetTree() ||
!neighborhood[4].GetTree() || !neighborhood[5].GetTree() ||
!neighborhood[6].GetTree() || !neighborhood[7].GetTree())
{
return;
}
static int edges[12][2] = { {0,1}, {1,2}, {2,3}, {0,3},
{4,5}, {5,6}, {6,7}, {4,7},
{0,4}, {1,5}, {3,7}, {2,6}};
static int CASE_MASK[8] = {1,2,4,8,16,32,64,128};
int vertMap[8];
// !!!! Notice the translation from Voxel ids to Hex ids.
vertMap[0] = neighborhood[0].GetLeafIndex();
vertMap[1] = neighborhood[1].GetLeafIndex();
vertMap[2] = neighborhood[3].GetLeafIndex();
vertMap[3] = neighborhood[2].GetLeafIndex();
vertMap[4] = neighborhood[4].GetLeafIndex();
vertMap[5] = neighborhood[5].GetLeafIndex();
vertMap[6] = neighborhood[7].GetLeafIndex();
vertMap[7] = neighborhood[6].GetLeafIndex();
// We need a map to permute the point ids from voxel to hex.
// Note: Permutation is its own inverse. Makes life easy.
static int HEX_VOX_PERMUTATION[8] = {0,1,3,2,4,5,7,6};
double points[8][3];
double scalars[8];
double levelDim;
for (int iter = 0; iter < 8; ++iter)
{
// Note: we have to extent points on boundary of tree !!!
scalars[iter] = this->InScalars->GetComponent(vertMap[iter],0);
levelDim = static_cast<double>(1<<neighborhood[iter].GetLevel());
points[HEX_VOX_PERMUTATION[iter]][0]
= this->Origin[0] +
(static_cast<double>(*xyzIds++)+0.5)*(this->Size[0])/levelDim;
points[HEX_VOX_PERMUTATION[iter]][1]
= this->Origin[1] +
(static_cast<double>(*xyzIds++)+0.5)*(this->Size[1])/levelDim;
points[HEX_VOX_PERMUTATION[iter]][2]
= this->Origin[2] +
(static_cast<double>(*xyzIds++)+0.5)*(this->Size[2])/levelDim;
// We need to skip over unused 4th id.
++xyzIds;
}
int numContours=this->ContourValues->GetNumberOfContours();
for (int iter = 0; iter < numContours; ++iter)
{
double value = this->ContourValues->GetValue(iter);
// The cell contour method had two problems:
// You could not switch cell and point data easily,
// and you had to copy the scalars and points.
//this->Voxel->Contour(value, this->VoxelScalars, this->Locator,
// this->NewVerts,this->NewLines,this->NewPolys,
// this->InPD, this->OutPD, this->InPD,
// this->InCellCount, this->OutCD);
// Contour the voxel our self.
// Some voxels will be degenerated with points shared between corners.
// Appropriate faces will always line up.
vtkMarchingCubesTriangleCases *triCase;
EDGE_LIST *edge;
int i, j, index, *vert;
vtkIdType pts[3];
double t, x[3];
double *x1;
double *x2;
// Build the case table
for ( i=0, index = 0; i < 8; i++)
{
if (scalars[i] >= value)
{
index |= CASE_MASK[i];
}
}
triCase = vtkMarchingCubesTriangleCases::GetCases() + index;
edge = triCase->edges;
for ( ; edge[0] > -1; edge += 3 )
{
for (i=0; i<3; i++) // insert triangle
{
vert = edges[edge[i]];
t = (value - scalars[vert[0]]) / (scalars[vert[1]] - scalars[vert[0]]);
x1 = (points[vert[0]]);
x2 = (points[vert[1]]);
for (j=0; j<3; j++)
{
x[j] = x1[j] + t * (x2[j] - x1[j]);
}
if ( this->Locator->InsertUniquePoint(x, pts[i]) )
{
int p1 = vertMap[vert[0]];
int p2 = vertMap[vert[1]];
this->OutPD->InterpolateEdge(this->InPD,pts[i],p1,p2,t);
}
}
// check for degenerate triangle
if ( pts[0] != pts[1] &&
pts[0] != pts[2] &&
pts[1] != pts[2] )
{
this->NewPolys->InsertNextCell(3,pts);
// We have no point data in the octree that would convert to cell data.
//outCd->CopyData(inCd,cellId,newCellId);
}
}
}
// We have passed all the tests, generate the dual cell.
/*
vtkIdType ptIds[2];
ptIds[0] = neighborhood[c000].GetLeafIndex();
ptIds[1] = neighborhood[c001].GetLeafIndex();
lines->InsertNextCell(2, ptIds);
ptIds[0] = neighborhood[c010].GetLeafIndex();
ptIds[1] = neighborhood[c011].GetLeafIndex();
lines->InsertNextCell(2, ptIds);
ptIds[0] = neighborhood[c100].GetLeafIndex();
ptIds[1] = neighborhood[c101].GetLeafIndex();
lines->InsertNextCell(2, ptIds);
ptIds[0] = neighborhood[c110].GetLeafIndex();
ptIds[1] = neighborhood[c111].GetLeafIndex();
lines->InsertNextCell(2, ptIds);
ptIds[0] = neighborhood[c000].GetLeafIndex();
ptIds[1] = neighborhood[c010].GetLeafIndex();
lines->InsertNextCell(2, ptIds);
ptIds[0] = neighborhood[c001].GetLeafIndex();
ptIds[1] = neighborhood[c011].GetLeafIndex();
lines->InsertNextCell(2, ptIds);
ptIds[0] = neighborhood[c100].GetLeafIndex();
ptIds[1] = neighborhood[c110].GetLeafIndex();
lines->InsertNextCell(2, ptIds);
ptIds[0] = neighborhood[c101].GetLeafIndex();
ptIds[1] = neighborhood[c111].GetLeafIndex();
lines->InsertNextCell(2, ptIds);
ptIds[0] = neighborhood[c000].GetLeafIndex();
ptIds[1] = neighborhood[c100].GetLeafIndex();
lines->InsertNextCell(2, ptIds);
ptIds[0] = neighborhood[c001].GetLeafIndex();
ptIds[1] = neighborhood[c101].GetLeafIndex();
lines->InsertNextCell(2, ptIds);
ptIds[0] = neighborhood[c010].GetLeafIndex();
ptIds[1] = neighborhood[c110].GetLeafIndex();
lines->InsertNextCell(2, ptIds);
ptIds[0] = neighborhood[c011].GetLeafIndex();
ptIds[1] = neighborhood[c111].GetLeafIndex();
lines->InsertNextCell(2, ptIds);
*/
}
//----------------------------------------------------------------------------
//
// Cut through data generating surface.
//
int vtkHyperOctreeDualGridContourFilter::RequestData(
vtkInformation *vtkNotUsed(request),
vtkInformationVector **inputVector,
vtkInformationVector *outputVector)
{
// get the info objects
vtkInformation *inInfo = inputVector[0]->GetInformationObject(0);
vtkInformation *outInfo = outputVector->GetInformationObject(0);
// get the input
this->Input = vtkHyperOctree::SafeDownCast(
inInfo->Get(vtkDataObject::DATA_OBJECT()));
if(this->Input->GetNumberOfLevels()==1)
{
// just the root. There is absolutely no chance
// to get an isosurface here.
this->Input=0;
return 1;
}
if (this->Input->GetDimension() != 3)
{
vtkErrorMacro("This class only handles 3d Octree's");
return 1;
}
this->InScalars=this->GetInputArrayToProcess(0,inputVector);
if(this->InScalars==0)
{
vtkDebugMacro(<<"No data to contour");
this->Input=0;
return 1;
}
int numContours=this->ContourValues->GetNumberOfContours();
if(numContours==0)
{
vtkDebugMacro(<<"No contour");
this->Input=0;
return 1;
}
double *values=this->ContourValues->GetValues();
// If all the contour values are out of the range of the input scalar
// there is no chance to get a contour, just exit.
double range[2];
this->InScalars->GetRange(range);
int i=0;
int allOut=1;
while(allOut && i<numContours)
{
allOut=(values[i]<range[0]) || (values[i]>range[1]);
++i;
}
if(allOut)
{
// empty output
this->Input=0;
return 1;
}
this->Output=vtkPolyData::SafeDownCast(
outInfo->Get(vtkDataObject::DATA_OBJECT()));
this->Input->GetOrigin(this->Origin);
this->Input->GetSize(this->Size);
// Assumes that the DataSet API returns dual.
vtkIdType numLeaves = this->Input->GetNumberOfPoints();
//cout << numLeaves << " leaves\n";
vtkIdType estimatedSize = numLeaves / 2;
vtkPoints *newPoints = vtkPoints::New();
newPoints->Allocate(estimatedSize,estimatedSize/2);
this->NewPolys = vtkCellArray::New();
this->NewPolys->Allocate(estimatedSize,estimatedSize/2);
// locator used to merge potentially duplicate points
if ( this->Locator == NULL )
{
this->CreateDefaultLocator();
}
this->Locator->InitPointInsertion (newPoints, this->Input->GetBounds());
this->InPD=this->Input->GetLeafData();
this->OutPD=this->Output->GetPointData();
this->OutPD->CopyAllocate(this->InPD,estimatedSize,estimatedSize/2);
// Create an array of cursors that occupy 1 2x2x2 neighborhhod. This
// will traverse the tree as one.
vtkHyperOctreeLightWeightCursor neighborhood[8];
neighborhood[0].Initialize(this->Input);
// Index of node in uniform grid (x,y,z) for each neighbor.
// Storing 4 indexes per neighbor for efficiency.
// Could also be useful for 4d trees :)
unsigned short xyzId[32];
memset(xyzId,0,32*sizeof(unsigned short));
this->TraverseNeighborhoodRecursively(neighborhood, xyzId);
this->Output->SetPolys(this->NewPolys);
this->NewPolys->Delete();
this->NewPolys = 0;
// Points were added by the locator.
this->Output->SetPoints(newPoints);
newPoints->Delete();
newPoints = 0;
return 1;
}
//----------------------------------------------------------------------------
// Specify a spatial locator for merging points. By default,
// an instance of vtkMergePoints is used.
void vtkHyperOctreeDualGridContourFilter::SetLocator(vtkIncrementalPointLocator *locator)
{
if ( this->Locator == locator)
{
return;
}
if ( this->Locator )
{
this->Locator->UnRegister(this);
this->Locator = NULL;
}
if ( locator )
{
locator->Register(this);
}
this->Locator = locator;
this->Modified();
}
//----------------------------------------------------------------------------
void vtkHyperOctreeDualGridContourFilter::CreateDefaultLocator()
{
if ( this->Locator == NULL )
{
this->Locator = vtkMergePoints::New();
this->Locator->Register(this);
this->Locator->Delete();
}
}
//----------------------------------------------------------------------------
int vtkHyperOctreeDualGridContourFilter::RequestUpdateExtent(
vtkInformation *,
vtkInformationVector **inputVector,
vtkInformationVector *)
{
vtkInformation *inInfo = inputVector[0]->GetInformationObject(0);
inInfo->Set(vtkStreamingDemandDrivenPipeline::EXACT_EXTENT(), 1);
return 1;
}
//----------------------------------------------------------------------------
int vtkHyperOctreeDualGridContourFilter::FillInputPortInformation(int,
vtkInformation *info)
{
info->Set(vtkAlgorithm::INPUT_REQUIRED_DATA_TYPE(), "vtkHyperOctree");
return 1;
}
|