1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
|
/*=========================================================================
Program: Visualization Toolkit
Module: vtkHyperOctreeDualGridContourFilter.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
/**
* @class vtkHyperOctreeDualGridContourFilter
* @brief generate isosurfaces/isolines from scalar values
*
* use of unsigned short to hold level index limits tree depth to 16.
*
* To use this filter you must specify one or more contour values.
* You can either use the method SetValue() to specify each contour
* value, or use GenerateValues() to generate a series of evenly
* spaced contours. It is also possible to accelerate the operation of
* this filter (at the cost of extra memory) by using a
* vtkScalarTree. A scalar tree is used to quickly locate cells that
* contain a contour surface. This is especially effective if multiple
* contours are being extracted. If you want to use a scalar tree,
* invoke the method UseScalarTreeOn().
*
* @sa
* vtkMarchingContourFilter vtkKitwareContourFilter
* vtkMarchingCubes vtkSliceCubes vtkDividingCubes vtkMarchingSquares
* vtkImageMarchingCubes
*/
#ifndef vtkHyperOctreeDualGridContourFilter_h
#define vtkHyperOctreeDualGridContourFilter_h
#include "vtkFiltersHyperTreeModule.h" // For export macro
#include "vtkPolyDataAlgorithm.h"
#include "vtkContourValues.h" // Needed for inline methods
#include "vtkCutter.h" // for VTK_SORT_BY_VALUE
class vtkHyperOctree;
class vtkTetra;
class vtkHyperOctreeCursor;
class vtkHyperOctreeLightWeightCursor;
class vtkDataSetAttributes;
class vtkUnstructuredGrid;
class vtkUnsignedCharArray;
class vtkIdTypeArray;
class vtkBitArray;
class vtkIncrementalPointLocator;
class VTKFILTERSHYPERTREE_EXPORT vtkHyperOctreeDualGridContourFilter : public vtkPolyDataAlgorithm
{
public:
vtkTypeMacro(vtkHyperOctreeDualGridContourFilter,vtkPolyDataAlgorithm);
void PrintSelf(ostream& os, vtkIndent indent);
/**
* Construct object with initial range (0,1) and single contour value
* of 0.0.
*/
static vtkHyperOctreeDualGridContourFilter *New();
/**
* Methods to set / get contour values.
*/
/**
* Set a particular contour value at contour number i. The index i ranges
* between 0<=i<NumberOfContours.
*/
void SetValue(int i, double value)
{
this->ContourValues->SetValue(i,value);
}
/**
* Get the ith contour value.
*/
double GetValue(int i)
{
return this->ContourValues->GetValue(i);
}
/**
* Get a pointer to an array of contour values. There will be
* GetNumberOfContours() values in the list.
*/
double *GetValues()
{
return this->ContourValues->GetValues();
}
/**
* Fill a supplied list with contour values. There will be
* GetNumberOfContours() values in the list. Make sure you allocate
* enough memory to hold the list.
*/
void GetValues(double *contourValues)
{
this->ContourValues->GetValues(contourValues);
}
/**
* Set the number of contours to place into the list. You only really
* need to use this method to reduce list size. The method SetValue()
* will automatically increase list size as needed.
*/
void SetNumberOfContours(int number)
{
this->ContourValues->SetNumberOfContours(number);
}
/**
* Get the number of contours in the list of contour values.
*/
int GetNumberOfContours()
{
return this->ContourValues->GetNumberOfContours();
}
/**
* Generate numContours equally spaced contour values between specified
* range. Contour values will include min/max range values.
*/
void GenerateValues(int numContours, double range[2])
{
this->ContourValues->GenerateValues(numContours, range);
}
/**
* Generate numContours equally spaced contour values between specified
* range. Contour values will include min/max range values.
*/
void GenerateValues(int numContours, double
rangeStart, double rangeEnd)
{
this->ContourValues->GenerateValues(numContours, rangeStart, rangeEnd);
}
/**
* Modified GetMTime Because we delegate to vtkContourValues
*/
vtkMTimeType GetMTime();
//@{
/**
* Set / get a spatial locator for merging points. By default,
* an instance of vtkMergePoints is used.
*/
void SetLocator(vtkIncrementalPointLocator *locator);
vtkGetObjectMacro(Locator,vtkIncrementalPointLocator);
//@}
/**
* Create default locator. Used to create one when none is
* specified. The locator is used to merge coincident points.
*/
void CreateDefaultLocator();
protected:
vtkHyperOctreeDualGridContourFilter();
~vtkHyperOctreeDualGridContourFilter();
virtual int RequestData(vtkInformation* request,
vtkInformationVector** inputVector,
vtkInformationVector* outputVector);
virtual int RequestUpdateExtent(vtkInformation*,
vtkInformationVector**,
vtkInformationVector*);
virtual int FillInputPortInformation(int port, vtkInformation *info);
/**
* Do the recursive contour of the node pointed by Cursor.
*/
void ContourNode();
void TraverseNeighborhoodRecursively(
vtkHyperOctreeLightWeightCursor* neighborhood,
unsigned short* xyzIds);
void EvaluatePoint(vtkHyperOctreeLightWeightCursor* neighborhood,
unsigned short* xyzIds);
void ContourNode1D();
vtkContourValues *ContourValues;
vtkIncrementalPointLocator *Locator;
vtkHyperOctree *Input;
vtkPolyData *Output;
vtkCellArray *NewPolys;
vtkDataSetAttributes *InPD;
vtkDataSetAttributes *OutPD;
vtkDataArray *InScalars;
// To compute points on the fly.
// These are set to the input origin and size.
double Origin[3];
double Size[3];
// This is a table for traversing a neighborhood down an octree.
// 8 children x 8 cursors
// First three bits encode the child, rest encode the cursor id.
// 8xCursorId + childId.
unsigned char NeighborhoodTraversalTable[64];
void GenerateTraversalTable();
private:
vtkHyperOctreeDualGridContourFilter(const vtkHyperOctreeDualGridContourFilter&) VTK_DELETE_FUNCTION;
void operator=(const vtkHyperOctreeDualGridContourFilter&) VTK_DELETE_FUNCTION;
};
#endif
|