File: vtkHyperTreeGridGeometry.cxx

package info (click to toggle)
vtk7 7.1.1%2Bdfsg1-12
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 125,776 kB
  • sloc: cpp: 1,539,582; ansic: 106,521; python: 78,038; tcl: 47,013; xml: 8,142; yacc: 5,040; java: 4,439; perl: 3,132; lex: 1,926; sh: 1,500; makefile: 122; objc: 83
file content (302 lines) | stat: -rw-r--r-- 9,645 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkHyperTreeGridGeometry.cxx

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
#include "vtkHyperTreeGridGeometry.h"

#include "vtkBitArray.h"
#include "vtkCellArray.h"
#include "vtkCellData.h"
#include "vtkDataSetAttributes.h"
#include "vtkExtentTranslator.h"
#include "vtkHyperTreeGrid.h"
#include "vtkInformation.h"
#include "vtkInformationVector.h"
#include "vtkObjectFactory.h"
#include "vtkPointData.h"
#include "vtkPolyData.h"
#include "vtkStreamingDemandDrivenPipeline.h"

vtkStandardNewMacro(vtkHyperTreeGridGeometry);

//-----------------------------------------------------------------------------
vtkHyperTreeGridGeometry::vtkHyperTreeGridGeometry()
{
  this->Input = 0;
  this->Output = 0;

  this->InData = 0;
  this->OutData = 0;

  this->Points = 0;
  this->Cells = 0;
}

//-----------------------------------------------------------------------------
vtkHyperTreeGridGeometry::~vtkHyperTreeGridGeometry()
{
}

//----------------------------------------------------------------------------
void vtkHyperTreeGridGeometry::PrintSelf( ostream& os, vtkIndent indent )
{
  this->Superclass::PrintSelf( os, indent );
}

//-----------------------------------------------------------------------------
int vtkHyperTreeGridGeometry::FillInputPortInformation( int, vtkInformation *info )
{
  info->Set( vtkAlgorithm::INPUT_REQUIRED_DATA_TYPE(), "vtkHyperTreeGrid" );
  return 1;
}

//----------------------------------------------------------------------------
int vtkHyperTreeGridGeometry::RequestData( vtkInformation*,
                                           vtkInformationVector** inputVector,
                                           vtkInformationVector* outputVector )
{
  // Get the info objects
  vtkInformation *inInfo = inputVector[0]->GetInformationObject( 0 );
  vtkInformation *outInfo = outputVector->GetInformationObject( 0 );

  // Retrieve input and output
  this->Input =
    vtkHyperTreeGrid::SafeDownCast( inInfo->Get( vtkDataObject::DATA_OBJECT() ) );
  this->Output =
    vtkPolyData::SafeDownCast( outInfo->Get( vtkDataObject::DATA_OBJECT() ) );

  // Initialize output cell data
  this->InData =
    static_cast<vtkDataSetAttributes*>( this->Input->GetPointData() );
  this->OutData =
    static_cast<vtkDataSetAttributes*>( this->Output->GetCellData() );
  this->OutData->CopyAllocate( this->InData );

  // Extract geometry from hyper tree grid
  this->ProcessTrees();

  // Clean up
  this->Input = 0;
  this->Output = 0;
  this->InData = 0;
  this->OutData = 0;

  this->UpdateProgress( 1. );

  return 1;
}

//-----------------------------------------------------------------------------
void vtkHyperTreeGridGeometry::ProcessTrees()
{
  // TODO: MTime on generation of this table.
  this->Input->GenerateSuperCursorTraversalTable();

  // Primal corner points
  this->Points = vtkPoints::New();
  this->Cells = vtkCellArray::New();

  // Iterate over all hyper trees
  vtkIdType index;
  vtkHyperTreeGrid::vtkHyperTreeIterator it;
  this->Input->InitializeTreeIterator( it );
  while ( it.GetNextTree( index ) )
  {
    // Storage for super cursors
    vtkHyperTreeGrid::vtkHyperTreeGridSuperCursor superCursor;

    // Initialize center cursor
    this->Input->InitializeSuperCursor( &superCursor, index );

    // Traverse and populate dual recursively
    this->RecursiveProcessTree( &superCursor );
  } // it

  // Set output geometry and topology
  this->Output->SetPoints( this->Points );
  if ( this->Input->GetDimension() == 1  )
  {
    this->Output->SetLines( this->Cells );
  }
  else
  {
    this->Output->SetPolys( this->Cells );
  }

  this->Points->UnRegister( this );
  this->Points = 0;
  this->Cells->UnRegister( this );
  this->Cells = 0;
}

//----------------------------------------------------------------------------
void vtkHyperTreeGridGeometry::RecursiveProcessTree( void* sc )
{
  // Get cursor at super cursor center
  vtkHyperTreeGrid::vtkHyperTreeGridSuperCursor* superCursor =
    static_cast<vtkHyperTreeGrid::vtkHyperTreeGridSuperCursor*>( sc );
  vtkHyperTreeGrid::vtkHyperTreeSimpleCursor* cursor0 = superCursor->GetCursor( 0 );
  if ( cursor0->IsLeaf() )
  {
    switch ( this->Input->GetDimension() )
    {
      case 1:
        ProcessLeaf1D( sc );
        break;
      case 2:
        ProcessLeaf2D( sc );
        break;
      case 3:
        ProcessLeaf3D( sc );
        break;
    }
  }
  else
  {
    // If cursor 0 is not at leaf, recurse to all children
    int numChildren = this->Input->GetNumberOfChildren();
    for ( int child = 0; child < numChildren; ++ child )
    {
      vtkHyperTreeGrid::vtkHyperTreeGridSuperCursor newSuperCursor;
      this->Input->InitializeSuperCursorChild( superCursor, &newSuperCursor, child );
      this->RecursiveProcessTree( &newSuperCursor );
    }
  }
}

//----------------------------------------------------------------------------
void vtkHyperTreeGridGeometry::ProcessLeaf1D( void* sc )
{
  vtkHyperTreeGrid::vtkHyperTreeGridSuperCursor* superCursor =
    static_cast<vtkHyperTreeGrid::vtkHyperTreeGridSuperCursor*>( sc );

  // In 1D the geometry is composed of edges
  vtkIdType ids[2];
  ids[0] = this->Points->InsertNextPoint( superCursor->Origin );
  double pt[3];
  pt[0] = superCursor->Origin[0] + superCursor->Size[0];
  pt[1] = superCursor->Origin[1];
  pt[2] = superCursor->Origin[2];
  ids[1] = this->Points->InsertNextPoint( pt );
  this->Cells->InsertNextCell( 2, ids );
}

//----------------------------------------------------------------------------
void vtkHyperTreeGridGeometry::ProcessLeaf2D( void* sc )
{
  // Get cursor at super cursor center
  vtkHyperTreeGrid::vtkHyperTreeGridSuperCursor* superCursor =
    static_cast<vtkHyperTreeGrid::vtkHyperTreeGridSuperCursor*>( sc );
  vtkHyperTreeGrid::vtkHyperTreeSimpleCursor* cursor0 = superCursor->GetCursor( 0 );

  // Cell at cursor 0 is a leaf, retrieve its global index
  vtkIdType id0 = cursor0->GetGlobalNodeIndex();
  // In 2D all unmasked faces are generated
  if ( id0 >= 0 && ! this->Input->GetMaterialMask()->GetValue( id0 ) )
  {
    this->AddFace( id0, superCursor->Origin, superCursor->Size, 0, 2 );
  }
}

//----------------------------------------------------------------------------
void vtkHyperTreeGridGeometry::ProcessLeaf3D( void* sc )
{
  // Get cursor at super cursor center
  vtkHyperTreeGrid::vtkHyperTreeGridSuperCursor* superCursor =
    static_cast<vtkHyperTreeGrid::vtkHyperTreeGridSuperCursor*>( sc );
  vtkHyperTreeGrid::vtkHyperTreeSimpleCursor* cursor0 = superCursor->GetCursor( 0 );

  vtkBitArray* matMask = this->Input->GetMaterialMask();

  // Cell at cursor 0 is a leaf, retrieve its global index
  vtkIdType id0 = cursor0->GetGlobalNodeIndex();

  int neighborIdx = -1;
  int masked = matMask->GetValue( id0 );
  // In 3D masked and unmasked cells are handles differently
  for ( unsigned int f = 0; f < 3; ++ f, neighborIdx *= 3 )
  {
    // For each plane, check both orientations
    for ( unsigned int o = 0; o < 2; ++ o, neighborIdx *= -1 )
    {
      // Retrieve face neighbor cursor
      vtkHyperTreeGrid::vtkHyperTreeSimpleCursor* cursor =
        superCursor->GetCursor( neighborIdx );
      vtkIdType id = cursor->GetGlobalNodeIndex();

      // Cell is masked, check if any of the face neighbors are unmasked
      if ( masked )
      {
        // Generate faces shared by an unmasked cell, break ties at same level
        if ( cursor->GetTree()
          && cursor->IsLeaf()
          && cursor->GetLevel() < cursor0->GetLevel() )
        {

          if ( id >=0 && ! matMask->GetValue( id ) )
          {
            this->AddFace( id0, superCursor->Origin, superCursor->Size, o, f );
          }
        }
      }
      else
      {
        // Boundary faces, or faces shared by a masked cell, must be created
        if ( ! cursor->GetTree()
          ||
          ( cursor->IsLeaf() && matMask->GetValue( id ) ) )
        {
          this->AddFace( id0, superCursor->Origin, superCursor->Size, o, f );
        }
      }
    } // o
  } // f
}

//----------------------------------------------------------------------------
void vtkHyperTreeGridGeometry::AddFace( vtkIdType inId,
                                        double* origin, double* size,
                                        int offset, int orientation )
{
  // Initialize point
  double pt[3];
  memcpy( pt, origin, 3 * sizeof(double) );

  if ( offset )
  {
    pt[orientation] += size[orientation];
  }

  // Storage for face vertices
  vtkIdType ids[4];

  // Create origin vertex
  ids[0] = this->Points->InsertNextPoint( pt );

  // Create other face vertices depending on orientation
  int axis1 = ( orientation == 0 ) ? 1 : 0;
  int axis2 = ( orientation == 2 ) ? 1 : 2;

  pt[axis1] += size[axis1];
  ids[1] = this->Points->InsertNextPoint( pt );
  pt[axis2] += size[axis2];
  ids[2] = this->Points->InsertNextPoint( pt );
  pt[axis1] = origin[axis1];
  ids[3] = this->Points->InsertNextPoint( pt );

  // Insert face
  vtkIdType outId = this->Cells->InsertNextCell( 4, ids );

  // Copy face data from that of the cell from which it comes
  this->OutData->CopyData( this->InData, inId, outId );
}