1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
|
/*=========================================================================
Program: Visualization Toolkit
Module: vtkDijkstraGraphInternals.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
/**
* @class vtkDijkstraGraphInternals
* @brief Helper class due to PIMPL excess
*
* @sa
* vtkDijkstraGraphGeodesicPath
* @warning
* Do not include this file in a header file, it will break PIMPL convention
*/
#ifndef vtkDijkstraGraphInternals_h
#define vtkDijkstraGraphInternals_h
#include <vector>
#include <map>
//-----------------------------------------------------------------------------
class vtkDijkstraGraphInternals
{
public:
vtkDijkstraGraphInternals()
{
this->HeapSize = 0;
}
~vtkDijkstraGraphInternals()
{
}
// CumulativeWeights(v) current summed weight for path to vertex v.
std::vector<double> CumulativeWeights;
// Predecessors(v) predecessor of v.
std::vector<int> Predecessors;
// OpenVertices is the set of vertices which has not a shortest path yet but has a path.
// OpenVertices(v) == 1 means that vertex v is in OpenVertices.
// OpenVertices is a boolean (1/0) array.
std::vector<unsigned char> OpenVertices;
// ClosedVertices is the set of vertices with already determined shortest path
// ClosedVertices(v) == 1 means that vertex v is in ClosedVertices.
// ClosedVertices is a boolean (1/0) array.
std::vector<unsigned char> ClosedVertices;
// Adjacency representation.
std::vector< std::map< int,double > > Adjacency;
// Path repelling by assigning high costs to flagged vertices.
std::vector<unsigned char> BlockedVertices;
void Heapify(const int& i)
{
// left node
unsigned int l = i * 2;
// right node
unsigned int r = i * 2 + 1;
int smallest = -1;
// The value of element v is CumulativeWeights(v)
// the heap stores the vertex numbers
if ( l <= this->HeapSize &&
( this->CumulativeWeights[ this->Heap[l] ] <
this->CumulativeWeights[ this->Heap[i] ] ) )
{
smallest = l;
}
else
{
smallest = i;
}
if ( r <= this->HeapSize &&
( this->CumulativeWeights[ this->Heap[ r ] ] <
this->CumulativeWeights[ this->Heap[ smallest ] ] ) )
{
smallest = r;
}
if ( smallest != i )
{
int t = this->Heap[i];
this->Heap[ i ] = this->Heap[ smallest ];
// where is Heap(i)
this->HeapIndices[ this->Heap[i] ] = i;
// Heap and HeapIndices are kinda inverses
this->Heap[ smallest ] = t;
this->HeapIndices[ t ] = smallest;
this->Heapify( smallest );
}
}
void HeapInsert(const int& v)
{
if ( this->HeapSize >= (this->Heap.size() - 1) )
{
return;
}
this->HeapSize++;
int i = this->HeapSize;
while ( i > 1 &&
this->CumulativeWeights[ this->Heap[i/2] ] >
this->CumulativeWeights[v] )
{
this->Heap[ i ] = this->Heap[i/2];
this->HeapIndices[ this->Heap[i] ] = i;
i /= 2;
}
// Heap and HeapIndices are kinda inverses
this->Heap[ i ] = v;
this->HeapIndices[ v ] = i;
}
int HeapExtractMin()
{
if ( this->HeapSize == 0 )
{
return -1;
}
int minv = this->Heap[ 1 ];
this->HeapIndices[ minv ] = -1;
this->Heap[ 1 ] = this->Heap[ this->HeapSize ];
this->HeapIndices[ this->Heap[1] ]= 1;
this->HeapSize--;
this->Heapify( 1 );
return minv;
}
void HeapDecreaseKey(const int& v)
{
// where in Heap is vertex v
int i = this->HeapIndices[ v ];
if ( i < 1 || i > static_cast<int>(this->HeapSize) )
{
return;
}
while ( i > 1 &&
this->CumulativeWeights[ this->Heap[ i/2 ] ] >
this->CumulativeWeights[ v ] )
{
this->Heap[ i ] = this->Heap[i/2];
this->HeapIndices[ this->Heap[i] ] = i;
i /= 2;
}
// Heap and HeapIndices are kinda inverses
this->Heap[ i ] = v;
this->HeapIndices[ v ] = i;
}
void ResetHeap()
{
this->HeapSize = 0;
}
void InitializeHeap(const int& size)
{
this->Heap.resize( size + 1 );
this->HeapIndices.resize( size );
}
private:
unsigned int HeapSize;
// The priority que (a binary heap) with vertex indices.
std::vector<int> Heap;
// HeapIndices(v) the position of v in Heap (HeapIndices and Heap are kind of inverses).
std::vector<int> HeapIndices;
};
#endif
// VTK-HeaderTest-Exclude: vtkDijkstraGraphInternals.h
|