File: vtkSelectPolyData.cxx

package info (click to toggle)
vtk7 7.1.1%2Bdfsg1-12
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 125,776 kB
  • sloc: cpp: 1,539,582; ansic: 106,521; python: 78,038; tcl: 47,013; xml: 8,142; yacc: 5,040; java: 4,439; perl: 3,132; lex: 1,926; sh: 1,500; makefile: 122; objc: 83
file content (659 lines) | stat: -rw-r--r-- 19,669 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkSelectPolyData.cxx

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
#include "vtkSelectPolyData.h"

#include "vtkCellArray.h"
#include "vtkCellData.h"
#include "vtkCharArray.h"
#include "vtkExecutive.h"
#include "vtkFloatArray.h"
#include "vtkGarbageCollector.h"
#include "vtkInformation.h"
#include "vtkInformationVector.h"
#include "vtkLine.h"
#include "vtkMath.h"
#include "vtkObjectFactory.h"
#include "vtkPointData.h"
#include "vtkPoints.h"
#include "vtkPolyData.h"
#include "vtkPolygon.h"
#include "vtkTriangleFilter.h"
#include "vtkTriangleStrip.h"

vtkStandardNewMacro(vtkSelectPolyData);

vtkCxxSetObjectMacro(vtkSelectPolyData,Loop,vtkPoints);

// Description:
// Instantiate object with InsideOut turned off.
vtkSelectPolyData::vtkSelectPolyData()
{
  this->GenerateSelectionScalars = 0;
  this->InsideOut = 0;
  this->Loop = NULL;
  this->SelectionMode = VTK_INSIDE_SMALLEST_REGION;
  this->ClosestPoint[0] = this->ClosestPoint[1] = this->ClosestPoint[2] = 0.0;
  this->GenerateUnselectedOutput = 0;

  this->SetNumberOfOutputPorts(3);

  vtkPolyData *output2 = vtkPolyData::New();
  this->GetExecutive()->SetOutputData(1, output2);
  output2->Delete();

  vtkPolyData *output3 = vtkPolyData::New();
  this->GetExecutive()->SetOutputData(2, output3);
  output3->Delete();
}

//----------------------------------------------------------------------------
vtkSelectPolyData::~vtkSelectPolyData()
{
  if (this->Loop)
  {
    this->Loop->Delete();
  }
}

//----------------------------------------------------------------------------
vtkPolyData *vtkSelectPolyData::GetUnselectedOutput()
{
  if (this->GetNumberOfOutputPorts() < 2)
  {
    return NULL;
  }

  return vtkPolyData::SafeDownCast(
    this->GetExecutive()->GetOutputData(1));
}

//----------------------------------------------------------------------------
vtkPolyData *vtkSelectPolyData::GetSelectionEdges()
{
  if (this->GetNumberOfOutputPorts() < 3)
  {
    return NULL;
  }

  return vtkPolyData::SafeDownCast(
    this->GetExecutive()->GetOutputData(2));
}

//----------------------------------------------------------------------------
int vtkSelectPolyData::RequestData(
  vtkInformation *vtkNotUsed(request),
  vtkInformationVector **inputVector,
  vtkInformationVector *outputVector)
{
  // get the info objects
  vtkInformation *inInfo = inputVector[0]->GetInformationObject(0);
  vtkInformation *outInfo = outputVector->GetInformationObject(0);

  // get the input and output
  vtkPolyData *input = vtkPolyData::SafeDownCast(
    inInfo->Get(vtkDataObject::DATA_OBJECT()));
  vtkPolyData *output = vtkPolyData::SafeDownCast(
    outInfo->Get(vtkDataObject::DATA_OBJECT()));

  vtkIdType numPts, numLoopPts;
  vtkPolyData *triMesh;
  vtkPointData *inPD, *outPD=output->GetPointData();
  vtkCellData *inCD, *outCD=output->GetCellData();
  vtkIdType closest=0, numPolys, i, j;
  int k;
  vtkIdList *loopIds, *edgeIds, *neighbors;
  double x[3], xLoop[3], closestDist2, dist2, t;
  double x0[3], x1[3], vec[3], dir[3], neiX[3];
  vtkCellArray *inPolys;
  vtkPoints *inPts;
  int numNei;
  vtkIdType id, currentId = 0, nextId, pt1, pt2, numCells, neiId;
  vtkIdType *cells, *pts, npts, numMeshLoopPts, prevId;
  unsigned short int ncells;
  int mark, s1, s2, val;

  // Initialize and check data
  vtkDebugMacro(<<"Selecting data...");

  this->GetUnselectedOutput()->Initialize();
  this->GetSelectionEdges()->Initialize();

  if ( (numPts = input->GetNumberOfPoints()) < 1 )
  {
    vtkErrorMacro("Input contains no points");
    return 1;
  }

  if ( this->Loop == NULL ||
  (numLoopPts=this->Loop->GetNumberOfPoints()) < 3 )
  {
    vtkErrorMacro("Please define a loop with at least three points");
    return 1;
  }

  // Okay, now we build unstructured representation. Make sure we're
  // working with triangles.
  vtkTriangleFilter *tf=vtkTriangleFilter::New();
  tf->SetInputData(input);
  tf->PassLinesOff();
  tf->PassVertsOff();
  tf->Update();
  triMesh = tf->GetOutput();
  triMesh->Register(this);
  tf->Delete();
  inPD = triMesh->GetPointData();
  inCD = triMesh->GetCellData();

  numPts = triMesh->GetNumberOfPoints();
  inPts = triMesh->GetPoints();
  inPolys = triMesh->GetPolys();
  numPolys = inPolys->GetNumberOfCells();
  if ( numPolys < 1 )
  {
    vtkErrorMacro("This filter operates on surface primitives");
    tf->Delete();
    triMesh->UnRegister(this);
    return 1;
  }

  this->Mesh = vtkPolyData::New();
  this->Mesh->SetPoints(inPts); //inPts
  this->Mesh->SetPolys(inPolys);
  this->Mesh->BuildLinks(); //to do neighborhood searching
  numCells = this->Mesh->GetNumberOfCells();

  // First thing to do is find the closest mesh points to the loop
  // points. This creates a list of point ids.
  loopIds = vtkIdList::New();
  loopIds->SetNumberOfIds(numLoopPts);

  for ( i=0; i < numLoopPts; i++)
  {
    this->Loop->GetPoint(i,xLoop);
    closest = -1;
    closestDist2 = VTK_DOUBLE_MAX;

    for ( j=0; j < numPts; j++)
    {
      inPts->GetPoint(j,x);

      dist2 = vtkMath::Distance2BetweenPoints(x, xLoop);
      if ( dist2 < closestDist2 )
      {
        closest = j;
        closestDist2 = dist2;
      }
    } //for all input points

    loopIds->SetId(i,closest);
  } //for all loop points

  // Now that we've got point ids, we build the loop. Start with the
  // first two points in the loop (which define a line), and find the
  // mesh edge that is directed along the line, and whose
  // end point is closest to the line. Continue until loop closes in on
  // itself.
  edgeIds = vtkIdList::New();
  edgeIds->Allocate(numLoopPts*10,1000);
  neighbors = vtkIdList::New();
  neighbors->Allocate(10000);
  edgeIds->InsertNextId(loopIds->GetId(0));

  for ( i=0; i < numLoopPts; i++ )
  {
    currentId = loopIds->GetId(i);
    nextId = loopIds->GetId((i+1)%numLoopPts);
    prevId = (-1);
    inPts->GetPoint(currentId, x);
    inPts->GetPoint(currentId, x0);
    inPts->GetPoint(nextId, x1);
    for (j=0; j<3; j++)
    {
      vec[j] = x1[j] - x0[j];
    }

    // track edge
    for (id=currentId; id != nextId; )
    {
      this->GetPointNeighbors(id,neighbors); //points connected by edge
      numNei = neighbors->GetNumberOfIds();
      closest = -1;
      closestDist2 = VTK_DOUBLE_MAX;
      for (j=0; j<numNei; j++)
      {
        neiId = neighbors->GetId(j);
        if ( neiId == nextId )
        {
          closest = neiId;
          break;
        }
        else
        {
          inPts->GetPoint(neiId, neiX);
          for (k=0; k<3; k++)
          {
            dir[k] = neiX[k] - x[k];
          }
          if ( neiId != prevId && vtkMath::Dot(dir,vec) > 0.0 ) //candidate
          {
            dist2 = vtkLine::DistanceToLine(neiX, x0, x1);
            if ( dist2 < closestDist2 )
            {
              closest = neiId;
              closestDist2 = dist2;
            }
          }//in direction of line
        }
      }//for all neighbors

      if ( closest < 0 )
      {
        vtkErrorMacro(<<"Can't follow edge");
        triMesh->UnRegister(this);
        this->Mesh->Delete();
        neighbors->Delete();
        edgeIds->Delete();
        loopIds->Delete();
        return 1;
      }
      else
      {
        edgeIds->InsertNextId(closest);
        prevId = id;
        id = closest;
        inPts->GetPoint(id, x);
      }
    }//for tracking edge
  }//for all edges of loop

  // mainly for debugging
  numMeshLoopPts = edgeIds->GetNumberOfIds();
  vtkCellArray *selectionEdges=vtkCellArray::New();
  selectionEdges->Allocate(selectionEdges->EstimateSize(1,numMeshLoopPts),100);
  selectionEdges->InsertNextCell(numMeshLoopPts);
  for (i=0; i<numMeshLoopPts; i++)
  {
    selectionEdges->InsertCellPoint(edgeIds->GetId(i));
  }
  this->GetSelectionEdges()->SetPoints(inPts);
  this->GetSelectionEdges()->SetLines(selectionEdges);
  selectionEdges->Delete();

  // Phew...we've defined loop, now want to do a fill so we can extract the
  // inside from the outside. Depending on GenerateSelectionScalars flag,
  // we either set the distance of the points to the selection loop as
  // zero (GenerateSelectionScalarsOff) or we evaluate the distance of these
  // points to the lines. (Later we'll use a connected traversal to compute
  // the distances to the remaining points.)

  // Next, prepare to mark off inside/outside and on boundary of loop.
  // Mark the boundary of the loop using point marks. Also initialize
  // the advancing front (used to mark traversal/compute scalars).
  // Prepare to compute the advancing front
  vtkIntArray *cellMarks = vtkIntArray::New();
  cellMarks->SetNumberOfValues(numCells);
  for (i=0; i<numCells; i++)  //mark unvisited
  {
    cellMarks->SetValue(i,VTK_INT_MAX);
  }
  vtkIntArray *pointMarks = vtkIntArray::New();
  pointMarks->SetNumberOfValues(numPts);
  for (i=0; i<numPts; i++)  //mark unvisited
  {
    pointMarks->SetValue(i,VTK_INT_MAX);
  }

  vtkIdList *currentFront = vtkIdList::New(), *tmpFront;
  vtkIdList *nextFront = vtkIdList::New();
  for (i=0; i<numMeshLoopPts; i++)
  {
    id = edgeIds->GetId(i);
    pointMarks->SetValue(id, 0); //marks the start of the front
    currentFront->InsertNextId(id);
  }

  // Traverse the front as long as we can. We're basically computing a
  // topological distance.
  int maxFront=0;
  vtkIdType maxFrontCell=(-1);
  int currentFrontNumber=1, numPtsInFront;
  while ( (numPtsInFront = currentFront->GetNumberOfIds()) )
  {
    for (i=0; i < numPtsInFront; i++)
    {
      id = currentFront->GetId(i);
      this->Mesh->GetPointCells(id, ncells, cells);
      for (j=0; j<ncells; j++)
      {
        id = cells[j];
        if ( cellMarks->GetValue(id) == VTK_INT_MAX )
        {
          if ( currentFrontNumber > maxFront )
          {
            maxFrontCell = id;
          }
          cellMarks->SetValue(id, currentFrontNumber);
          this->Mesh->GetCellPoints(id,npts,pts);
          for (k=0; k<npts; k++)
          {
            if ( pointMarks->GetValue(pts[k]) == VTK_INT_MAX )
            {
              pointMarks->SetValue(pts[k], 1);
              nextFront->InsertNextId(pts[k]);
            }
          }
        }
      } //for cells surrounding point
    } //all points in front

    currentFrontNumber++;
    tmpFront = currentFront;
    currentFront = nextFront;
    nextFront = tmpFront;
    nextFront->Reset();
  } //while still advancing

  // Okay, now one of the regions is filled with negative values. This fill
  // operation assumes that everything is connected.
  if ( this->SelectionMode == VTK_INSIDE_CLOSEST_POINT_REGION )
  {// find closest point and use as a seed
    for (closestDist2=VTK_DOUBLE_MAX, j=0; j < numPts; j++)
    {
      inPts->GetPoint(j,x);

      dist2 = vtkMath::Distance2BetweenPoints(x, this->ClosestPoint);
      // get closest point not on the boundary
      if ( dist2 < closestDist2 && pointMarks->GetValue(j) != 0 )
      {
        closest = j;
        closestDist2 = dist2;
      }
    } //for all input points
    this->Mesh->GetPointCells(closest, ncells, cells);
  }

  // We do the fill as a moving front. This is an alternative to recursion. The
  // fill negates one region of the mesh on one side of the loop.
  currentFront->Reset(); nextFront->Reset();
  currentFront->InsertNextId(maxFrontCell);
  vtkIdType numCellsInFront;

  cellMarks->SetValue(maxFrontCell,-1);

  while ( (numCellsInFront = currentFront->GetNumberOfIds()) > 0 )
  {
    for (i=0; i < numCellsInFront; i++)
    {
      id = currentFront->GetId(i);

      this->Mesh->GetCellPoints(id, npts, pts);
      for (j=0; j<3; j++)
      {
        pt1 = pts[j];
        pt2 = pts[(j+1)%3];
        s1 = pointMarks->GetValue(pt1);
        s2 = pointMarks->GetValue(pt2);

        if ( s1 != 0 )
        {
          pointMarks->SetValue(pt1, -1);
        }

        if ( ! (s1 == 0 && s2 == 0) )
        {
          this->Mesh->GetCellEdgeNeighbors(id, pt1, pt2, neighbors);
          numNei = neighbors->GetNumberOfIds();
          for (k=0; k<numNei; k++)
          {
            neiId = neighbors->GetId(k);
            val = cellMarks->GetValue(neiId);
            if ( val != -1 ) //-1 is what we're filling with
            {
              cellMarks->SetValue(neiId,-1);
              nextFront->InsertNextId(neiId);
            }
          }
        }//if can cross boundary
      }//for all edges of cell
    } //all cells in front

    tmpFront = currentFront;
    currentFront = nextFront;
    nextFront = tmpFront;
    nextFront->Reset();
  } //while still advancing

  // Now may have to invert fill value depending on what we wan to extract
  if ( this->SelectionMode == VTK_INSIDE_SMALLEST_REGION )
  {
    for (i=0; i < numCells; i++)
    {
      mark = cellMarks->GetValue(i);
      cellMarks->SetValue(i, -mark);
    }
    for (i=0; i < numPts; i++)
    {
      mark = pointMarks->GetValue(i);
      pointMarks->SetValue(i, -mark);
    }
  }

  // If generating selection scalars, we now have to modify the scalars to
  // approximate a distance function. Otherwise, we can create the output.
  if ( ! this->GenerateSelectionScalars )
  {//spit out all the negative cells
    vtkCellArray *newPolys=vtkCellArray::New();
    newPolys->Allocate(numCells/2, numCells/2);
    for (i=0; i< numCells; i++)
    {
      if ( (cellMarks->GetValue(i) < 0) ||
      (cellMarks->GetValue(i) > 0 && this->InsideOut) )
      {
        this->Mesh->GetCellPoints(i, npts, pts);
        newPolys->InsertNextCell(npts,pts);
      }
    }
    output->SetPoints(inPts);
    output->SetPolys(newPolys);
    outPD->PassData(inPD);
    newPolys->Delete();

    if ( this->GenerateUnselectedOutput )
    {
      vtkCellArray *unPolys=vtkCellArray::New();
      unPolys->Allocate(numCells/2, numCells/2);
      for (i=0; i< numCells; i++)
      {
        if ( (cellMarks->GetValue(i) >= 0) || this->InsideOut )
        {
          this->Mesh->GetCellPoints(i, npts, pts);
          unPolys->InsertNextCell(npts,pts);
        }
      }
      this->GetUnselectedOutput()->SetPoints(inPts);
      this->GetUnselectedOutput()->SetPolys(unPolys);
      this->GetUnselectedOutput()->GetPointData()->PassData(inPD);
      unPolys->Delete();
    }

  }
  else //modify scalars to generate selection scalars
  {
    vtkFloatArray *selectionScalars=vtkFloatArray::New();
    selectionScalars->SetNumberOfTuples(numPts);

    // compute distance to lines. Really this should be computed based on
    // the connected fill distance.
    for (j=0; j < numPts; j++) //compute minimum distance to loop
    {
      if ( pointMarks->GetValue(j) != 0 )
      {
        inPts->GetPoint(j,x);
        for ( closestDist2=VTK_DOUBLE_MAX, i=0; i < numLoopPts; i++ )
        {
          this->Loop->GetPoint(i, x0);
          this->Loop->GetPoint((i+1)%numLoopPts, x1);
          dist2 = vtkLine::DistanceToLine(x, x0, x1, t, xLoop);
          if ( dist2 < closestDist2 )
          {
            closestDist2 = dist2;
          }
        }//for all loop edges
          closestDist2 = sqrt((double)closestDist2);
          selectionScalars->SetComponent(j,0,
                                         closestDist2*pointMarks->GetValue(j));
      }
    }

    // Now, determine the sign of those points "on the boundary" to give a
    // better approximation to the scalar field.
    for (j=0; j < numMeshLoopPts; j++)
    {
      id = edgeIds->GetId(j);
      inPts->GetPoint(id, x);
      for ( closestDist2=VTK_DOUBLE_MAX, i=0; i < numLoopPts; i++ )
      {
        this->Loop->GetPoint(i, x0);
        this->Loop->GetPoint((i+1)%numLoopPts, x1);
        dist2 = vtkLine::DistanceToLine(x, x0, x1, t, xLoop);
        if ( dist2 < closestDist2 )
        {
          closestDist2 = dist2;
          neiX[0] = xLoop[0]; neiX[1] = xLoop[1]; neiX[2] = xLoop[2];
        }
      }//for all loop edges
      closestDist2 = sqrt((double)closestDist2);

      // find neighbor not on boundary and compare negative/positive values
      // to see what makes the most sense
      this->GetPointNeighbors(id, neighbors);
      numNei = neighbors->GetNumberOfIds();
      for (dist2=0.0, i=0; i<numNei; i++)
      {
        neiId = neighbors->GetId(i);
        if ( pointMarks->GetValue(neiId) != 0 ) //find the furthest away
        {
          if ( fabs(selectionScalars->GetComponent(neiId,0)) > dist2 )
          {
            currentId = neiId;
            dist2 = fabs(selectionScalars->GetComponent(neiId,0));
          }
        }
      }

      inPts->GetPoint(currentId, x0);
      if ( vtkMath::Distance2BetweenPoints(x0,x) <
           vtkMath::Distance2BetweenPoints(x0,neiX) )
      {
        closestDist2 = closestDist2 * pointMarks->GetValue(currentId);
      }
      else
      {
        closestDist2 = -closestDist2 * pointMarks->GetValue(currentId);
      }

      selectionScalars->SetComponent(id,0,closestDist2);
    }//for all boundary points

    output->CopyStructure(this->Mesh); //pass geometry/topology unchanged
    int idx = outPD->AddArray(selectionScalars);
    outPD->SetActiveAttribute(idx, vtkDataSetAttributes::SCALARS);
    outPD->CopyScalarsOff();
    outPD->PassData(inPD);
    outCD->PassData(inCD);
    selectionScalars->Delete();
  }

  // Clean up and update output
  triMesh->UnRegister(this);
  this->Mesh->Delete();
  neighbors->Delete();
  edgeIds->Delete();
  loopIds->Delete();
  cellMarks->Delete();
  pointMarks->Delete();
  currentFront->Delete();
  nextFront->Delete();

  return 1;
}

//----------------------------------------------------------------------------
void vtkSelectPolyData::GetPointNeighbors (vtkIdType ptId, vtkIdList *nei)
{
  unsigned short ncells;
  int i, j;
  vtkIdType *cells, *pts, npts;

  nei->Reset();
  this->Mesh->GetPointCells(ptId, ncells, cells);
  for (i=0; i<ncells; i++)
  {
    this->Mesh->GetCellPoints(cells[i], npts, pts);
    for (j=0; j<3; j++)
    {
      if ( pts[j] != ptId )
      {
        nei->InsertUniqueId(pts[j]);
      }
    }
  }
}

//----------------------------------------------------------------------------
vtkMTimeType vtkSelectPolyData::GetMTime()
{
  vtkMTimeType mTime=this->Superclass::GetMTime();
  vtkMTimeType time;

  if ( this->Loop != NULL )
  {
    time = this->Loop->GetMTime();
    mTime = ( time > mTime ? time : mTime );
  }

  return mTime;
}

//----------------------------------------------------------------------------
void vtkSelectPolyData::PrintSelf(ostream& os, vtkIndent indent)
{
  this->Superclass::PrintSelf(os,indent);

  os << indent << "Generate Unselected Output: "
     << (this->GenerateUnselectedOutput ? "On\n" : "Off\n");

  os << indent << "Inside Mode: ";
  os << this->GetSelectionModeAsString() << "\n";

  os << indent << "Closest Point: (" << this->ClosestPoint[0] << ", "
     << this->ClosestPoint[1] << ", " << this->ClosestPoint[2] << ")\n";

  os << indent << "Generate Selection Scalars: "
     << (this->GenerateSelectionScalars ? "On\n" : "Off\n");

  os << indent << "Inside Out: " << (this->InsideOut ? "On\n" : "Off\n");

  if ( this->Loop )
  {
    os << indent << "Loop of " << this->Loop->GetNumberOfPoints()
       << "points defined\n";
  }
  else
  {
    os << indent << "Loop not defined\n";
  }
}