1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
|
/*=========================================================================
Program: Visualization Toolkit
Module: vtkExtractCTHPart.cxx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkExtractCTHPart.h"
#include "vtkAppendPolyData.h"
#include "vtkBoundingBox.h"
#include "vtkCellArray.h"
#include "vtkCellData.h"
#include "vtkCharArray.h"
#include "vtkClipPolyData.h"
#include "vtkCompositeDataIterator.h"
#include "vtkCompositeDataPipeline.h"
#include "vtkCompositeDataSet.h"
#include "vtkContourFilter.h"
#include "vtkCutter.h"
#include "vtkDataSetSurfaceFilter.h"
#include "vtkDoubleArray.h"
#include "vtkExecutive.h"
#include "vtkExtractCTHPart.h"
#include "vtkGarbageCollector.h"
#include "vtkImageData.h"
#include "vtkInformation.h"
#include "vtkInformationVector.h"
#include "vtkMultiBlockDataSet.h"
#include "vtkMultiProcessController.h"
#include "vtkNew.h"
#include "vtkObjectFactory.h"
#include "vtkPlaneCollection.h"
#include "vtkPlane.h"
#include "vtkPointData.h"
#include "vtkPolyData.h"
#include "vtkRectilinearGrid.h"
#include "vtkSmartPointer.h"
#include "vtkTimerLog.h"
#include "vtkToolkits.h"
#include "vtkUniformGrid.h"
#include <algorithm>
#include <cassert>
#include <cmath>
#include <string>
#include <vector>
vtkStandardNewMacro(vtkExtractCTHPart);
vtkCxxSetObjectMacro(vtkExtractCTHPart,ClipPlane,vtkPlane);
vtkCxxSetObjectMacro(vtkExtractCTHPart,Controller,vtkMultiProcessController);
const double CTH_AMR_SURFACE_VALUE=0.499;
const double CTH_AMR_SURFACE_VALUE_FLOAT=1;
const double CTH_AMR_SURFACE_VALUE_UNSIGNED_CHAR=255;
//-----------------------------------------------------------------------------
//=============================================================================
class vtkExtractCTHPartInternal
{
public:
typedef std::vector<std::string> VolumeArrayNamesType;
VolumeArrayNamesType VolumeArrayNames;
vtkBoundingBox GlobalInputBounds;
// Counter used to scale progress events.
int TotalNumberOfDatasets;
};
class vtkExtractCTHPart::VectorOfFragments :
public std::vector<vtkSmartPointer<vtkPolyData> >
{
};
class vtkExtractCTHPart::ScaledProgress
{
vtkExtractCTHPart* Self;
double Shift;
double Scale;
public:
ScaledProgress(double shift, double scale, vtkExtractCTHPart* self)
{
assert((self != NULL) &&
(shift >= 0.0) && (shift <= 1.0) &&
(scale >= 0.0) && (scale <= 1.0));
this->Self = self;
this->Shift = self->ProgressShift;
this->Scale = self->ProgressScale;
self->ProgressShift += shift * self->ProgressScale;
self->ProgressScale *= scale;
//cout << "Shift-Scale Push: " << self->ProgressShift << ", " <<
// self->ProgressScale << endl;
}
~ScaledProgress()
{
this->WorkDone();
}
void WorkDone()
{
if (this->Self)
{
this->Self->ProgressScale = this->Scale;
this->Self->ProgressShift = this->Shift;
//cout << "Shift-Scale Pop: " << this->Self->ProgressShift << ", " <<
// this->Self->ProgressScale << endl;
this->Self = NULL;
}
}
};
//=============================================================================
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
vtkExtractCTHPart::vtkExtractCTHPart()
{
this->Internals = new vtkExtractCTHPartInternal();
this->ClipPlane = NULL;
this->GenerateTriangles = true;
this->Capping = true;
this->RemoveGhostCells = true;
this->VolumeFractionSurfaceValueInternal = CTH_AMR_SURFACE_VALUE;
this->VolumeFractionSurfaceValue = CTH_AMR_SURFACE_VALUE;
this->ProgressScale = 1.0;
this->ProgressShift = 0.0;
this->Controller = 0;
this->SetController(vtkMultiProcessController::GetGlobalController());
}
//-----------------------------------------------------------------------------
vtkExtractCTHPart::~vtkExtractCTHPart()
{
this->SetController(NULL);
this->SetClipPlane(NULL);
delete this->Internals;
this->Internals = 0;
}
//-----------------------------------------------------------------------------
// Overload standard modified time function. If clip plane is modified,
// then this object is modified as well.
vtkMTimeType vtkExtractCTHPart::GetMTime()
{
vtkMTimeType mTime= this->Superclass::GetMTime();
if (this->ClipPlane)
{
vtkMTimeType time = this->ClipPlane->GetMTime();
return time > mTime? time : mTime;
}
return mTime;
}
//-----------------------------------------------------------------------------
void vtkExtractCTHPart::RemoveVolumeArrayNames()
{
this->Internals->VolumeArrayNames.clear();
this->Modified();
}
//-----------------------------------------------------------------------------
void vtkExtractCTHPart::AddVolumeArrayName(const char* arrayName)
{
if (arrayName !=0 &&
arrayName[0] != 0 &&
std::find(this->Internals->VolumeArrayNames.begin(),
this->Internals->VolumeArrayNames.end(), std::string(arrayName))==
this->Internals->VolumeArrayNames.end())
{
this->Internals->VolumeArrayNames.push_back(arrayName);
// ensure that the volume arrays are in determinate order. I should just
// change the code to use a std::set.
std::sort(this->Internals->VolumeArrayNames.begin(),
this->Internals->VolumeArrayNames.end());
this->Modified();
}
}
//-----------------------------------------------------------------------------
int vtkExtractCTHPart::GetNumberOfVolumeArrayNames()
{
return static_cast<int>(this->Internals->VolumeArrayNames.size());
}
//-----------------------------------------------------------------------------
const char* vtkExtractCTHPart::GetVolumeArrayName(int idx)
{
if ( idx < 0 ||
idx > static_cast<int>(this->Internals->VolumeArrayNames.size()) )
{
return 0;
}
return this->Internals->VolumeArrayNames[idx].c_str();
}
//----------------------------------------------------------------------------
int vtkExtractCTHPart::FillInputPortInformation(
int port, vtkInformation *info)
{
if (!this->Superclass::FillInputPortInformation(port,info))
{
return 0;
}
info->Set(vtkAlgorithm::INPUT_REQUIRED_DATA_TYPE(), "vtkNonOverlappingAMR");
info->Append(vtkAlgorithm::INPUT_REQUIRED_DATA_TYPE(), "vtkMultiBlockDataSet");
info->Append(vtkAlgorithm::INPUT_REQUIRED_DATA_TYPE(), "vtkRectilinearGrid");
return 1;
}
//-----------------------------------------------------------------------------
int vtkExtractCTHPart::RequestData(vtkInformation *vtkNotUsed(request),
vtkInformationVector **inputVector, vtkInformationVector *outputVector)
{
const int number_of_volume_arrays = static_cast<int>(this->Internals->VolumeArrayNames.size());
if (number_of_volume_arrays == 0)
{
// nothing to do.
return 1;
}
vtkDataObject* inputDO = vtkDataObject::GetData(inputVector[0], 0);
vtkSmartPointer<vtkCompositeDataSet> inputCD = vtkCompositeDataSet::SafeDownCast(inputDO);
vtkRectilinearGrid* inputRG = vtkRectilinearGrid::SafeDownCast(inputDO);
assert(inputCD != NULL || inputRG != NULL);
if (inputRG)
{
vtkNew<vtkMultiBlockDataSet> mb;
mb->SetBlock(0, inputRG);
inputCD = mb.GetPointer();
}
vtkMultiBlockDataSet* output = vtkMultiBlockDataSet::GetData(outputVector, 0);
// initialize output multiblock-dataset. It will always have as many blocks as
// the number-of-volume arrays requested.
output->SetNumberOfBlocks(number_of_volume_arrays);
// Compute global bounds for the input dataset. This is used to generate
// external surface for the dataset.
if (!this->ComputeGlobalBounds(inputCD))
{
vtkErrorMacro("Failed to compute global bounds.");
return 0;
}
if (!this->Internals->GlobalInputBounds.IsValid())
{
// empty input, do nothing.
return 1;
}
unsigned int array_index = 0;
for (vtkExtractCTHPartInternal::VolumeArrayNamesType::iterator iter =
this->Internals->VolumeArrayNames.begin();
iter != this->Internals->VolumeArrayNames.end(); ++iter, ++array_index)
{
// this loop is doing the 1/(num-arrays)'th work for the entire task.
ScaledProgress sp(
array_index * 1.0 / this->Internals->VolumeArrayNames.size(),
1.0/this->Internals->VolumeArrayNames.size(),
this);
output->GetMetaData(array_index)->Set(vtkCompositeDataSet::NAME(), iter->c_str());
vtkNew<vtkPolyData> contour;
vtkGarbageCollector::DeferredCollectionPush();
if (this->ExtractContour(contour.GetPointer(), inputCD, iter->c_str()) &&
(contour->GetNumberOfPoints() > 0))
{
// Add extra arrays.
vtkNew<vtkIntArray> partArray;
partArray->SetName("Part Index");
partArray->SetNumberOfComponents(1);
partArray->SetNumberOfTuples(contour->GetNumberOfPoints());
partArray->FillComponent(0, static_cast<double>(array_index));
contour->GetPointData()->AddArray(partArray.GetPointer());
// I'm not adding the "Name" array that was added in previous
// implementation. Don't think that's much of use.
output->SetBlock(array_index, contour.GetPointer());
}
vtkGarbageCollector::DeferredCollectionPop();
}
return 1;
}
//-----------------------------------------------------------------------------
bool vtkExtractCTHPart::ComputeGlobalBounds(vtkCompositeDataSet *input)
{
assert("pre: input_exists" && input!=0);
this->Internals->GlobalInputBounds.Reset();
this->Internals->TotalNumberOfDatasets = 0;
vtkCompositeDataIterator* iter = input->NewIterator();
for (iter->InitTraversal(); !iter->IsDoneWithTraversal(); iter->GoToNextItem())
{
vtkDataSet *ds = vtkDataSet::SafeDownCast(iter->GetCurrentDataObject());
if (!ds)// can be null if on another processor
{
continue;
}
double realBounds[6];
ds->GetBounds(realBounds);
this->Internals->GlobalInputBounds.AddBounds(realBounds);
++this->Internals->TotalNumberOfDatasets;
}
iter->Delete();
// Here we have the bounds according to our local datasets.
// If we are not running in parallel then the local
// bounds are the global bounds
if (!this->Controller || this->Controller->GetNumberOfProcesses() <= 1)
{
return true;
}
const double *min_point = this->Internals->GlobalInputBounds.GetMinPoint();
const double *max_point = this->Internals->GlobalInputBounds.GetMaxPoint();
double min_result[3], max_result[3];
if (!this->Controller->AllReduce(
min_point, min_result, 3, vtkCommunicator::MIN_OP))
{
return false;
}
if (!this->Controller->AllReduce(
max_point, max_result, 3, vtkCommunicator::MAX_OP))
{
return false;
}
this->Internals->GlobalInputBounds.SetBounds(
min_result[0], max_result[0], min_result[1], max_result[1],
min_result[2], max_result[2]);
// At this point, the global bounds is set in each processor.
return true;
}
//-----------------------------------------------------------------------------
// return false on error.
bool vtkExtractCTHPart::ExtractContour(
vtkPolyData* output, vtkCompositeDataSet* input, const char*arrayName)
{
assert(output!=0 && input!=0 && arrayName!=0 && arrayName[0]!=0);
bool warn_once = true;
vtkSmartPointer<vtkCompositeDataIterator> iter;
iter.TakeReference(input->NewIterator());
// this loop is first 95% of the work.
ScaledProgress sp1(0.0, 0.95, this);
int counter = 0;
vtkExtractCTHPart::VectorOfFragments fragments;
for (iter->InitTraversal(); !iter->IsDoneWithTraversal(); iter->GoToNextItem(), ++counter)
{
// each iteration is 1/(total num of datasets)'th for the work.
ScaledProgress sp(
counter * 1.0/this->Internals->TotalNumberOfDatasets,
1.0/this->Internals->TotalNumberOfDatasets, this);
if (counter % 1000 == 0)
{
this->TriggerProgressEvent(0.0);
}
vtkDataObject *dataObj = iter->GetCurrentDataObject();
vtkRectilinearGrid* rg = vtkRectilinearGrid::SafeDownCast(dataObj);
vtkUniformGrid* ug = vtkUniformGrid::SafeDownCast(dataObj);
if (ug)
{
if (!this->ExtractClippedContourOnBlock<vtkUniformGrid>(fragments, ug, arrayName))
{
return false;
}
}
else if (rg)
{
if (!this->ExtractClippedContourOnBlock<vtkRectilinearGrid>(fragments, rg, arrayName))
{
return false;
}
}
else if (warn_once && dataObj)
{
warn_once = false;
vtkWarningMacro(<< dataObj->GetClassName() << " will be ignored.");
}
if ((counter % 1000) == 0)
{
this->TriggerProgressEvent(1.0);
}
}
if (fragments.size() == 0)
{
// empty contour. Not an error though, hence we don't return false.
return true;
}
sp1.WorkDone();
// Now, the last .05 % of the work.
ScaledProgress sp2(0.95, 0.05, this);
this->TriggerProgressEvent(0.0);
vtkNew<vtkAppendPolyData> appender;
for (size_t cc=0; cc < fragments.size(); cc++)
{
appender->AddInputData(fragments[cc].GetPointer());
}
appender->Update();
output->ShallowCopy(appender->GetOutputDataObject(0));
this->TriggerProgressEvent(1.0);
return true;
}
//-----------------------------------------------------------------------------
template <class T>
bool vtkExtractCTHPart::ExtractClippedContourOnBlock(
vtkExtractCTHPart::VectorOfFragments& fragments, T* dataset, const char* arrayName)
{
assert(arrayName!=0 && arrayName[0]!=0 && dataset != 0);
vtkDataArray* volumeFractionArray = dataset->GetCellData()->GetArray(arrayName);
if (!volumeFractionArray)
{
// skip this block.
return true;
}
// determine the true value to use for the contour based on the data-type.
switch (volumeFractionArray->GetDataType())
{
case VTK_UNSIGNED_CHAR:
this->VolumeFractionSurfaceValueInternal =
CTH_AMR_SURFACE_VALUE_UNSIGNED_CHAR * this->VolumeFractionSurfaceValue;
break;
default:
this->VolumeFractionSurfaceValueInternal =
CTH_AMR_SURFACE_VALUE_FLOAT * this->VolumeFractionSurfaceValue;
}
// We create a clone so we can modify the dataset (i.e. add new arrays to it).
vtkNew<T> inputClone;
inputClone->ShallowCopy(dataset);
// Convert cell-data-2-point-data so we can contour.
vtkNew<vtkDoubleArray> pointVolumeFractionArray;
this->ExecuteCellDataToPointData(volumeFractionArray,
pointVolumeFractionArray.GetPointer(), inputClone->GetDimensions());
inputClone->GetPointData()->SetScalars(pointVolumeFractionArray.GetPointer());
VectorOfFragments blockFragments;
if (!this->ExtractContourOnBlock<T>(blockFragments, inputClone.GetPointer(), arrayName))
{
return false;
}
if (!this->ClipPlane)
{
fragments.insert(fragments.end(),
blockFragments.begin(), blockFragments.end());
return true;
}
// Clip-n-cap the fragments using the clip plane.
// for the clip.
for (size_t cc=0; cc < blockFragments.size(); cc++)
{
vtkNew<vtkClipPolyData> clipper;
clipper->SetClipFunction(this->ClipPlane);
clipper->SetInputDataObject(blockFragments[cc]);
clipper->Update();
fragments.push_back(clipper->GetOutput());
}
//// for the cap.
if (this->Capping)
{
vtkNew<vtkCutter> cutter;
cutter->SetCutFunction(this->ClipPlane);
cutter->SetGenerateTriangles(this->GenerateTriangles? 1 : 0);
cutter->SetInputDataObject(inputClone.GetPointer());
vtkNew<vtkClipPolyData> scalarClipper;
scalarClipper->SetInputConnection(cutter->GetOutputPort());
scalarClipper->SetValue(this->VolumeFractionSurfaceValueInternal);
scalarClipper->Update();
fragments.push_back(scalarClipper->GetOutput());
}
return true;
}
//-----------------------------------------------------------------------------
template <class T>
bool vtkExtractCTHPart::ExtractContourOnBlock(
vtkExtractCTHPart::VectorOfFragments& fragments, T* dataset, const char* arrayName)
{
assert(arrayName!=0 && arrayName[0]!=0 && dataset != 0);
vtkDataArray* volumeFractionArray = dataset->GetPointData()->GetArray(arrayName);
assert(volumeFractionArray !=0);
assert(dataset->GetPointData()->GetArray(arrayName) !=0);
// Contour only if necessary.
double range[2];
volumeFractionArray->GetRange(range);
if (range[1] < this->VolumeFractionSurfaceValueInternal)
{
// this block doesn't have the material of interest.
return true;
}
// Extract exterior surface. Adds the surface polydata to fragments, if any.
if (this->Capping)
{
this->ExtractExteriorSurface(fragments, dataset);
}
if (this->ClipPlane == NULL && range[0] > this->VolumeFractionSurfaceValueInternal)
{
// no need to extract contour.
return true;
}
// Extract contour.
vtkNew<vtkContourFilter> contourer;
contourer->SetInputData(dataset);
contourer->SetValue(0, this->VolumeFractionSurfaceValueInternal);
contourer->SetComputeScalars(0);
contourer->SetGenerateTriangles(this->GenerateTriangles? 1: 0);
contourer->SetInputArrayToProcess(0, 0, 0,
vtkDataObject::FIELD_ASSOCIATION_POINTS, arrayName);
contourer->Update();
vtkPolyData* output =
vtkPolyData::SafeDownCast(contourer->GetOutputDataObject(0));
if (!output || output->GetNumberOfPoints()== 0)
{
return true;
}
if (!this->RemoveGhostCells)
{
// BUG #14291. Rather than renaming the array, we remove the GhostArray
// from the output since it may not be present on all ranks and will cause array count mismatch
output->GetCellData()->RemoveArray(vtkDataSetAttributes::GhostArrayName());
}
fragments.push_back(output);
return true;
}
//-----------------------------------------------------------------------------
// Description:
// Append quads for faces of the block that actually on the bounds
// of the hierarchical dataset. Deals with ghost cells.
template <class T>
void vtkExtractCTHPart::ExtractExteriorSurface(
vtkExtractCTHPart::VectorOfFragments& fragments, T* input)
{
assert("pre: valid_input" && input!=0 && input->CheckAttributes()==0);
int result=0;
#if 1
int dims[3];
input->GetDimensions(dims);
int ext[6];
int originalExtents[6];
input->GetExtent(ext);
input->GetExtent(originalExtents);
// vtkUnsignedCharArray *ghostArray=static_cast<vtkUnsignedCharArray *>(input->GetCellData()->GetArray(vtkDataSetAttributes::GhostArrayName()));
// bounds without taking ghost cells into account
double bounds[6];
input->GetBounds(bounds);
#if 0
// block face min x
if(this->IsGhostFace(0,0,dims,ghostArray))
{
// downsize this!
bounds[0]+=spacing[0];
++ext[0];
}
if(this->IsGhostFace(0,1,dims,ghostArray))
{
// downsize this!
bounds[1]-=spacing[0];
--ext[1];
}
if(this->IsGhostFace(1,0,dims,ghostArray))
{
// downsize this!
bounds[2]+=spacing[1];
++ext[2];
}
if(this->IsGhostFace(1,1,dims,ghostArray))
{
// downsize this!
bounds[3]-=spacing[1];
--ext[3];
}
if(this->IsGhostFace(2,0,dims,ghostArray))
{
// downsize this!
bounds[4]+=spacing[2];
++ext[4];
}
if(this->IsGhostFace(2,1,dims,ghostArray))
{
// downsize this!
bounds[5]-=spacing[2];
--ext[5];
}
#endif
// here, bounds are real block bounds without ghostcells.
const double *minP = this->Internals->GlobalInputBounds.GetMinPoint();
const double *maxP = this->Internals->GlobalInputBounds.GetMaxPoint();
#if 0
const double epsilon=0.001;
int doFaceMinX=fabs(bounds[0]- minP[0])<epsilon;
int doFaceMaxX=fabs(bounds[1]- maxP[0])<epsilon;
int doFaceMinY=fabs(bounds[2]- minP[1])<epsilon;
int doFaceMaxY=fabs(bounds[3]- maxP[1])<epsilon;
int doFaceMinZ=fabs(bounds[4]- minP[2])<epsilon;
int doFaceMaxZ=fabs(bounds[5]- maxP[2])<epsilon;
#endif
#if 1
int doFaceMinX=bounds[0]<= minP[0];
int doFaceMaxX=bounds[1]>= maxP[0];
int doFaceMinY=bounds[2]<= minP[1];
int doFaceMaxY=bounds[3]>= maxP[1];
int doFaceMinZ=bounds[4]<= minP[2];
int doFaceMaxZ=bounds[5]>= maxP[2];
#endif
#if 0
int doFaceMinX=1;
int doFaceMaxX=1;
int doFaceMinY=1;
int doFaceMaxY=1;
int doFaceMinZ=1;
int doFaceMaxZ=1;
#endif
#if 0
int doFaceMinX=0;
int doFaceMaxX=0;
int doFaceMinY=0;
int doFaceMaxY=0;
int doFaceMinZ=0;
int doFaceMaxZ=0;
#endif
#if 0
doFaceMaxX=0;
doFaceMaxY=0;
doFaceMaxZ=0;
#endif
result=doFaceMinX||doFaceMaxX||doFaceMinY||doFaceMaxY||doFaceMinZ
||doFaceMaxZ;
if(result)
{
vtkSmartPointer<vtkPolyData> output = vtkSmartPointer<vtkPolyData>::New();
vtkIdType numPoints=0;
vtkIdType cellArraySize=0;
// input->GetExtent(ext);
// Compute an upper bound for the number of points and cells.
// xMin face
if (doFaceMinX && ext[2] != ext[3] && ext[4] != ext[5] && ext[0] != ext[1])
{
cellArraySize += 2*(ext[3]-ext[2]+1)*(ext[5]-ext[4]+1);
numPoints += (ext[3]-ext[2]+1)*(ext[5]-ext[4]+1);
}
// xMax face
if (doFaceMaxX && ext[2] != ext[3] && ext[4] != ext[5])
{
cellArraySize += 2*(ext[3]-ext[2]+1)*(ext[5]-ext[4]+1);
numPoints += (ext[3]-ext[2]+1)*(ext[5]-ext[4]+1);
}
// yMin face
if (doFaceMinY && ext[0] != ext[1] && ext[4] != ext[5] && ext[2] != ext[3])
{
cellArraySize += 2*(ext[1]-ext[0]+1)*(ext[5]-ext[4]+1);
numPoints += (ext[1]-ext[0]+1)*(ext[5]-ext[4]+1);
}
// yMax face
if (doFaceMaxY && ext[0] != ext[1] && ext[4] != ext[5])
{
cellArraySize += 2*(ext[1]-ext[0]+1)*(ext[5]-ext[4]+1);
numPoints += (ext[1]-ext[0]+1)*(ext[5]-ext[4]+1);
}
// zMin face
if (doFaceMinZ && ext[0] != ext[1] && ext[2] != ext[3] && ext[4] != ext[5])
{
cellArraySize += 2*(ext[1]-ext[0]+1)*(ext[3]-ext[2]+1);
numPoints += (ext[1]-ext[0]+1)*(ext[3]-ext[2]+1);
}
// zMax face
if (doFaceMaxZ && ext[0] != ext[1] && ext[2] != ext[3])
{
cellArraySize += 2*(ext[1]-ext[0]+1)*(ext[3]-ext[2]+1);
numPoints += (ext[1]-ext[0]+1)*(ext[3]-ext[2]+1);
}
vtkCellArray *outPolys = vtkCellArray::New();
outPolys->Allocate(cellArraySize);
output->SetPolys(outPolys);
outPolys->Delete();
vtkPoints *outPoints = vtkPoints::New();
outPoints->Allocate(numPoints);
output->SetPoints(outPoints);
outPoints->Delete();
// Allocate attributes for copying.
output->GetPointData()->CopyAllocate(input->GetPointData());
output->GetCellData()->CopyAllocate(input->GetCellData());
// Extents are already corrected for ghostcells.
// make each face that is actually on the ds boundary
if(doFaceMinX)
{
this->ExecuteFaceQuads(input,output,0,originalExtents,ext,0,1,2);
}
if(doFaceMaxX)
{
this->ExecuteFaceQuads(input,output,1,originalExtents,ext,0,2,1);
}
if(doFaceMinY)
{
this->ExecuteFaceQuads(input,output,0,originalExtents,ext,1,2,0);
}
if(doFaceMaxY)
{
this->ExecuteFaceQuads(input,output,1,originalExtents,ext,1,0,2);
}
if(doFaceMinZ)
{
this->ExecuteFaceQuads(input,output,0,originalExtents,ext,2,0,1);
}
if(doFaceMaxZ)
{
this->ExecuteFaceQuads(input,output,1,originalExtents,ext,2,1,0);
}
output->Squeeze();
assert(output->CheckAttributes() == 0);
vtkNew<vtkClipPolyData> clipper;
clipper->SetInputData(output);
clipper->SetValue(this->VolumeFractionSurfaceValueInternal);
clipper->Update();
fragments.push_back(clipper->GetOutput());
}
#endif
// result=>valid_surface: A=>B !A||B
}
//----------------------------------------------------------------------------
// Description:
// Is block face on axis0 (either min or max depending on the maxFlag)
// composed of only ghost cells?
int vtkExtractCTHPart::IsGhostFace(int axis0,
int maxFlag,
int dims[3],
vtkUnsignedCharArray *ghostArray)
{
assert("pre: valid_axis0" && axis0>=0 && axis0<=2);
int axis1=axis0+1;
if(axis1>2)
{
axis1=0;
}
int axis2=axis0+2;
if(axis2>2)
{
axis2=0;
}
int ijk[3]; // index of the cell.
if(maxFlag)
{
ijk[axis0]=dims[axis0]-2;
}
else
{
ijk[axis0]=0;
}
// We test the center cell of the block face.
// in the worst case (2x2 cells), we need to know if at least
// three cells are ghost to say that the face is a ghost face.
ijk[axis1]=dims[axis1]/2-1; // (dims[axis1]-2)/2
ijk[axis2]=dims[axis2]/2-1; // (dims[axis2]-2)/2
int result=ghostArray->GetValue(vtkStructuredData::ComputeCellId(dims,ijk));
if(dims[axis1]==3)
{
// axis1 requires 2 cells to be tested.
// if so, axis1index=0 and axis1index+1=1
ijk[axis1]=1;
result=result &&
ghostArray->GetValue(vtkStructuredData::ComputeCellId(dims,ijk));
}
if(dims[axis2]==3)
{
// herem axis1 may have moved from the previous test.
// axis2 requires 2 cells to be tested.
// if so, axis2index=0 and axis2index+1=1
ijk[axis2]=1;
result=result &&
ghostArray->GetValue(vtkStructuredData::ComputeCellId(dims,ijk));
}
return result;
}
//----------------------------------------------------------------------------
// Description:
// Merly the same implementation than in vtkDataSetSurfaceFilter, without
// dealing with the whole extents.
void vtkExtractCTHPart::ExecuteFaceQuads(vtkDataSet *input,
vtkPolyData *output,
int maxFlag,
int originalExtents[6],
int ext[6],
int aAxis,
int bAxis,
int cAxis)
{
assert("pre: input_exists" && input!=0);
assert("pre: output_exists" && output!=0);
assert("pre: originalExtents_exists" && originalExtents!=0);
assert("pre: ext_exists" && ext!=0);
assert("pre: valid_axes"
&& aAxis>=0 && aAxis<=2
&& bAxis>=0 && bAxis<=2
&& cAxis>=0 && cAxis<=2
&& aAxis!=bAxis
&& aAxis!=cAxis
&& bAxis!=cAxis);
vtkPoints *outPts;
vtkCellArray *outPolys;
vtkPointData *inPD, *outPD;
vtkCellData *inCD, *outCD;
int pInc[3];
int qInc[3];
int cOutInc;
double pt[3];
vtkIdType inStartPtId;
vtkIdType inStartCellId;
vtkIdType outStartPtId;
vtkIdType outPtId;
vtkIdType inId, outId;
int ib, ic;
int aA2, bA2, cA2;
outPts = output->GetPoints();
outPD = output->GetPointData();
inPD = input->GetPointData();
outCD = output->GetCellData();
inCD = input->GetCellData();
pInc[0] = 1;
pInc[1] = (originalExtents[1]-originalExtents[0]+1);
pInc[2] = (originalExtents[3]-originalExtents[2]+1) * pInc[1];
// quad increments (cell incraments, but cInc could be confused with c axis).
qInc[0] = 1;
qInc[1] = originalExtents[1]-originalExtents[0];
// The conditions are for when we have one or more degenerate axes (2d or 1d cells).
if (qInc[1] == 0)
{
qInc[1] = 1;
}
qInc[2] = (originalExtents[3]-originalExtents[2]) * qInc[1];
if (qInc[2] == 0)
{
qInc[2] = qInc[1];
}
// Temporary variables to avoid many multiplications.
aA2 = aAxis<<1; // * 2;
bA2 = bAxis<<1; // * 2;
cA2 = cAxis<<1; // * 2;
// We might as well put the test for this face here.
if (ext[bA2] == ext[bA2+1] || ext[cA2] == ext[cA2+1])
{
return;
}
#if 0
if (maxFlag)
{
if (ext[aA2+1] < wholeExt[aA2+1])
{
return;
}
}
else
{ // min faces have a slightly different condition to avoid coincident faces.
if (ext[aA2] == ext[aA2+1] || ext[aA2] > wholeExt[aA2])
{
return;
}
}
#endif
if(!maxFlag)
{
if (ext[aA2] == ext[aA2+1])
{
return;
}
}
// Assuming no ghost cells ...
// inStartPtId = inStartCellId = 0;
inStartPtId=0; //ext[aA2];
inStartCellId=0; //ext[aA2];
// I put this confusing conditional to fix a regression test.
// If we are creating a maximum face, then we indeed have to offset the input cell Ids.
// However, vtkGeometryFilter created a 2d image as a max face, but the cells are copied
// as a min face (no offset). Hence maxFlag = 1 and there should be no offset.
if (maxFlag && ext[aA2] < ext[1+aA2])
{
inStartPtId = pInc[aAxis]*(ext[aA2+1]-originalExtents[aA2]); // -ext[aA2]
inStartCellId = qInc[aAxis]*(ext[aA2+1]-originalExtents[aA2]-1); // -ext[aA2]
}
outStartPtId = outPts->GetNumberOfPoints();
// Make the points for this face.
for (ic = ext[cA2]; ic <= ext[cA2+1]; ++ic)
{
for (ib = ext[bA2]; ib <= ext[bA2+1]; ++ib)
{
// inId = inStartPtId + (ib-ext[bA2]+originExtents[bAxis])*pInc[bAxis]
// + (ic-ext[cA2]+originExtents[cAxis])*pInc[cAxis];
inId = inStartPtId + (ib-originalExtents[bA2])*pInc[bAxis]
+ (ic-originalExtents[cA2])*pInc[cAxis];
input->GetPoint(inId, pt);
outId = outPts->InsertNextPoint(pt);
// Copy point data.
outPD->CopyData(inPD,inId,outId);
}
}
// Do the cells.
cOutInc = ext[bA2+1] - ext[bA2] + 1;
outPolys = output->GetPolys();
// Old method for creating quads (needed for cell data.).
for (ic = ext[cA2]; ic < ext[cA2+1]; ++ic)
{
for (ib = ext[bA2]; ib < ext[bA2+1]; ++ib)
{
outPtId = outStartPtId + (ib-ext[bA2]) + (ic-ext[cA2])*cOutInc;
// inId = inStartCellId + (ib-ext[bA2]+originExtents[bAxis])*qInc[bAxis] + (ic-ext[cA2]+originExtents[cAxis])*qInc[cAxis];
inId = inStartCellId + (ib-originalExtents[bA2])*qInc[bAxis] + (ic-originalExtents[cA2])*qInc[cAxis];
outId = outPolys->InsertNextCell(4);
outPolys->InsertCellPoint(outPtId);
outPolys->InsertCellPoint(outPtId+cOutInc);
outPolys->InsertCellPoint(outPtId+cOutInc+1);
outPolys->InsertCellPoint(outPtId+1);
// Copy cell data.
outCD->CopyData(inCD,inId,outId);
}
}
}
//-----------------------------------------------------------------------------
void vtkExtractCTHPart::ExecuteCellDataToPointData(
vtkDataArray *cellVolumeFraction, vtkDoubleArray *pointVolumeFraction, const int *dims)
{
int count;
int i, j, k;
int iEnd, jEnd, kEnd;
int jInc, kInc;
double *pPoint;
pointVolumeFraction->SetName(cellVolumeFraction->GetName());
pointVolumeFraction->SetNumberOfTuples(dims[0]*dims[1]*dims[2]);
iEnd = dims[0]-1;
jEnd = dims[1]-1;
kEnd = dims[2]-1;
// Deals with none 3D images, otherwise it will never enter into the loop.
// And then the data will be not initialized and the output of the contour
// will be empty.
int dimensionality=3;
if(kEnd==0)
{
--dimensionality;
kEnd=1;
}
// Increments are for the point array.
jInc = dims[0];
kInc = (dims[1]) * jInc;
pPoint = pointVolumeFraction->GetPointer(0);
// pCell = static_cast<double*>(cellVolumeFraction->GetVoidPointer(0));
// Initialize the point data to 0.
memset(pPoint, 0, dims[0]*dims[1]*dims[2]*sizeof(double));
#ifndef NDEBUG
// for debugging and check out of range.
double *endPtr=pPoint+dims[0]*dims[1]*dims[2];
#endif
// float delProgress = (maxProgress - minProgress) / (kEnd*jEnd*iEnd) / 2;
// vtkIdType counter = 0;
int index=0;
// Loop thorugh the cells.
for (k = 0; k < kEnd; ++k)
{
for (j = 0; j < jEnd; ++j)
{
for (i = 0; i < iEnd; ++i)
{
//if (counter % 1000 == 0 && reportProgress)
// {
// this->UpdateProgress(minProgress + delProgress*(i+j*iEnd+k*iEnd*jEnd));
// }
//counter++;
// Add cell value to all points of cell.
double value=cellVolumeFraction->GetTuple1(index);
assert("check: valid_range" && pPoint<endPtr);
assert("check: valid_range" && pPoint+1<endPtr);
assert("check: valid_range" && pPoint+jInc<endPtr);
assert("check: valid_range" && pPoint+jInc+1<endPtr);
*pPoint += value;
pPoint[1] += value;
pPoint[jInc] += value;
pPoint[1+jInc] += value;
if(dimensionality==3)
{
assert("check: valid_range" && pPoint+kInc<endPtr);
assert("check: valid_range" && pPoint+kInc+1<endPtr);
assert("check: valid_range" && pPoint+kInc+jInc<endPtr);
assert("check: valid_range" && pPoint+kInc+jInc+1<endPtr);
pPoint[kInc] += value;
pPoint[kInc+1] += value;
pPoint[kInc+jInc] += value;
pPoint[kInc+jInc+1] += value;
}
// Increment pointers
++pPoint;
++index;
}
// Skip over last point to the start of the next row.
++pPoint;
}
// Skip over the last row to the start of the next plane.
pPoint += jInc;
}
// Now a second pass to normalize the point values.
// Loop through the points.
count = 1;
pPoint = pointVolumeFraction->GetPointer(0);
// because we eventually modified iEnd, jEnd, kEnd to handle the
// 2D image case, we have to recompute them.
iEnd = dims[0]-1;
jEnd = dims[1]-1;
kEnd = dims[2]-1;
// counter = 0;
for (k = 0; k <= kEnd; ++k)
{
// Just a fancy fast way to compute the number of cell neighbors of a
// point.
if (k == 1)
{
count = count << 1;
}
if (k == kEnd && kEnd>0)
{
// only in 3D case, otherwise count may become zero
// and be involved in a division by zero later on
count = count >> 1;
}
for (j = 0; j <= jEnd; ++j)
{
// Just a fancy fast way to compute the number of cell neighbors of a
// point.
if (j == 1)
{
count = count << 1;
}
if (j == jEnd)
{
count = count >> 1;
}
for (i = 0; i <= iEnd; ++i)
{
//if (counter % 1000 == 0 && reportProgress)
// {
// this->UpdateProgress(minProgress + delProgress/2 + delProgress*(i+j*iEnd+k*iEnd*jEnd));
// }
//counter++;
// Just a fancy fast way to compute the number of cell neighbors of a
// point.
if (i == 1)
{
count = count << 1;
}
if (i == iEnd)
{
count = count >> 1;
}
assert("check: valid_range" && pPoint<endPtr);
assert("check: strictly_positive_count" && count>0);
*pPoint = *pPoint / static_cast<double>(count);
++pPoint;
}
}
}
}
//-----------------------------------------------------------------------------
void vtkExtractCTHPart::TriggerProgressEvent(double val)
{
double progress = this->ProgressShift + val*this->ProgressScale;
//cout << "Progress: " << progress << endl;
this->UpdateProgress(progress);
}
//-----------------------------------------------------------------------------
void vtkExtractCTHPart::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os,indent);
os << indent << "VolumeArrayNames: \n";
vtkIndent i2 = indent.GetNextIndent();
std::vector<std::string>::iterator it;
for ( it = this->Internals->VolumeArrayNames.begin();
it != this->Internals->VolumeArrayNames.end();
++ it )
{
os << i2 << it->c_str() << endl;
}
os << indent << "VolumeFractionSurfaceValue: "
<< this->VolumeFractionSurfaceValue << endl;
os << indent << "Capping: " << this->Capping << endl;
os << indent << "GenerateTriangles: " << this->GenerateTriangles << endl;
os << indent << "RemoveGhostCells: " << this->RemoveGhostCells << endl;
if (this->ClipPlane)
{
os << indent << "ClipPlane:\n";
this->ClipPlane->PrintSelf(os, indent.GetNextIndent());
}
else
{
os << indent << "ClipPlane: NULL\n";
}
if ( this->Controller!=0)
{
os << "Controller:" << endl;
this->Controller->PrintSelf(os, indent.GetNextIndent());
}
else
{
os << "No Controller." << endl;
}
}
|