File: vtkPResampleToImage.cxx

package info (click to toggle)
vtk7 7.1.1%2Bdfsg1-12
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 125,776 kB
  • sloc: cpp: 1,539,582; ansic: 106,521; python: 78,038; tcl: 47,013; xml: 8,142; yacc: 5,040; java: 4,439; perl: 3,132; lex: 1,926; sh: 1,500; makefile: 122; objc: 83
file content (634 lines) | stat: -rw-r--r-- 18,191 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkPResampleToImage.cxx

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
#include "vtkPResampleToImage.h"

#include "vtkArrayDispatch.h"
#include "vtkCharArray.h"
#include "vtkCompositeDataProbeFilter.h"
#include "vtkCompositeDataSet.h"
#include "vtkDataArrayAccessor.h"
#include "vtkDataSetAttributes.h"
#include "vtkExtentTranslator.h"
#include "vtkIdList.h"
#include "vtkImageData.h"
#include "vtkInformation.h"
#include "vtkInformationVector.h"
#include "vtkMPI.h"
#include "vtkMPIController.h"
#include "vtkMPICommunicator.h"
#include "vtkNew.h"
#include "vtkObjectFactory.h"
#include "vtkPointData.h"
#include "vtkStreamingDemandDrivenPipeline.h"
#include "vtkUnsignedCharArray.h"

#include "vtk_diy2.h"   // must include this before any diy header
VTKDIY2_PRE_INCLUDE
#include VTK_DIY2_HEADER(diy/assigner.hpp)
#include VTK_DIY2_HEADER(diy/link.hpp)
#include VTK_DIY2_HEADER(diy/master.hpp)
#include VTK_DIY2_HEADER(diy/mpi.hpp)
#include VTK_DIY2_HEADER(diy/reduce.hpp)
#include VTK_DIY2_HEADER(diy/partners/swap.hpp)
#include VTK_DIY2_HEADER(diy/decomposition.hpp)
VTKDIY2_POST_INCLUDE

#include <algorithm>


vtkStandardNewMacro(vtkPResampleToImage);

vtkCxxSetObjectMacro(vtkPResampleToImage, Controller, vtkMultiProcessController);

namespace {

//----------------------------------------------------------------------------
template <typename T, std::size_t Len>
struct Array
{
public:
  T& operator[](std::size_t idx)
  {
    return this->Data[idx];
  }

  const T& operator[](std::size_t idx) const
  {
    return this->Data[idx];
  }

  T* data()
  {
    return this->Data;
  }

  const T* data() const
  {
    return this->Data;
  }

  std::size_t size() const
  {
    return Len;
  }

private:
  T Data[Len];
};


//-----------------------------------------------------------------------------
struct FieldMetaData
{
  std::string Name;
  int DataType;
  int NumComponents;
  int AttributeType;
};

inline void ExtractFieldMetaData(vtkDataSetAttributes *data,
                                 std::vector<FieldMetaData> *metadata)
{
  std::size_t numFields = static_cast<std::size_t>(data->GetNumberOfArrays());
  metadata->resize(numFields);

  for (std::size_t i = 0; i < numFields; ++i)
  {
    FieldMetaData &md = (*metadata)[i];
    vtkDataArray *da = data->GetArray(static_cast<int>(i));

    md.Name = da->GetName();
    md.DataType = da->GetDataType();
    md.NumComponents = da->GetNumberOfComponents();
    md.AttributeType = data->IsArrayAnAttribute(static_cast<int>(i));
  }
}

inline void InitializeFieldData(const std::vector<FieldMetaData> &metadata,
                                vtkIdType numTuples,
                                vtkDataSetAttributes *data)
{
  std::size_t numFields = metadata.size();
  for (std::size_t i = 0; i < numFields; ++i)
  {
    const FieldMetaData &md = metadata[i];
    vtkDataArray *da = vtkDataArray::CreateDataArray(md.DataType);
    da->SetName(md.Name.c_str());
    da->SetNumberOfComponents(md.NumComponents);
    da->SetNumberOfTuples(numTuples);

    double null_value = 0.0;
    for (int j = 0; j < da->GetNumberOfComponents(); ++j)
    {
      da->FillComponent(j, null_value);
    }
    data->AddArray(da);
    da->Delete();

    if (md.AttributeType >= 0)
    {
      data->SetActiveAttribute(static_cast<int>(i), md.AttributeType);
    }
  }
}


//----------------------------------------------------------------------------
class SerializeWorklet
{
public:
  SerializeWorklet(vtkIdType tuple, int numComponents, diy::MemoryBuffer &buffer)
    : Tuple(tuple), NumComponents(numComponents), Buffer(&buffer)
  { }

  template <typename ArrayType>
  void operator()(ArrayType *array) const
  {
    vtkDataArrayAccessor<ArrayType> accessor(array);
    for (int i = 0; i < this->NumComponents; ++i)
    {
      diy::save(*this->Buffer, accessor.Get(this->Tuple, i));
    }
  }

private:
  vtkIdType Tuple;
  int NumComponents;
  diy::MemoryBuffer *Buffer;
};

inline void SerializeFieldData(vtkFieldData *field, vtkIdType tuple,
                               diy::MemoryBuffer &bb)
{
  int numFields = field->GetNumberOfArrays();
  for (int i = 0; i < numFields; ++i)
  {
    vtkDataArray *da = field->GetArray(i);
    std::size_t numComponents = static_cast<std::size_t>(da->GetNumberOfComponents());
    SerializeWorklet worklet(tuple, numComponents, bb);
    if (!vtkArrayDispatch::Dispatch::Execute(da, worklet))
    {
      vtkGenericWarningMacro(<< "Dispatch failed, fallback to vtkDataArray Get/Set");
      worklet(da);
    }
  }
}

class DeserializeWorklet
{
public:
  DeserializeWorklet(vtkIdType tuple, int numComponents, diy::MemoryBuffer &buffer)
    : Tuple(tuple), NumComponents(numComponents), Buffer(&buffer)
  { }

  template <typename ArrayType>
  void operator()(ArrayType *array) const
  {
    vtkDataArrayAccessor<ArrayType> accessor(array);
    for (int i = 0; i < this->NumComponents; ++i)
    {
      typename vtkDataArrayAccessor<ArrayType>::APIType val;
      diy::load(*this->Buffer, val);
      accessor.Set(this->Tuple, i, val);
    }
  }

private:
  vtkIdType Tuple;
  int NumComponents;
  diy::MemoryBuffer *Buffer;
};

inline void DeserializeFieldData(diy::MemoryBuffer &bb, vtkFieldData *field,
                                 vtkIdType tuple)
{
  int numFields = field->GetNumberOfArrays();
  for (int i = 0; i < numFields; ++i)
  {
    vtkDataArray *da = field->GetArray(i);
    std::size_t numComponents = static_cast<std::size_t>(da->GetNumberOfComponents());
    DeserializeWorklet worklet(tuple, numComponents, bb);
    if (!vtkArrayDispatch::Dispatch::Execute(da, worklet))
    {
      vtkGenericWarningMacro(<< "Dispatch failed, fallback to vtkDataArray Get/Set");
      worklet(da);
    }
  }
}


//----------------------------------------------------------------------------
// A structure representing a list of points from an ImageData. Stores the
// points' 3D indices (Indices) and serialized point data (Data) and they
// should be stored in the same order.
struct PointList
{
  typedef Array<int, 3> IndexType;

  std::vector<IndexType> Indices; // indices
  std::vector<char> Data; // serialized data
  vtkIdType DataSize; // size in bytes of serialized data of one point
};

inline void swap(PointList &a, PointList &b)
{
  a.Indices.swap(b.Indices);
  a.Data.swap(b.Data);
  std::swap(a.DataSize, b.DataSize);
}

inline vtkIdType ComputeSerializedFieldDataSize(
  const std::vector<FieldMetaData> &fieldMetaData)
{
  vtkNew<vtkDataSetAttributes> attribs;
  InitializeFieldData(fieldMetaData, 1, attribs.GetPointer());
  diy::MemoryBuffer bb;
  SerializeFieldData(attribs.GetPointer(), 0, bb);
  return static_cast<vtkIdType>(bb.buffer.size());
}

//----------------------------------------------------------------------------
struct Block
{
  PointList Points;
  int Extent[6];
};

inline void* CreateBlock()
{
  return new Block;
}

inline void DestroyBlock(void *blockp)
{
  delete static_cast<Block*>(blockp);
}


//---------------------------------------------------------------------------
// Creates a PointList of all the valid points in img
inline void GetPointsFromImage(vtkImageData *img, const char *maskArrayName,
                               PointList *points)
{
  if (img->GetNumberOfPoints() <= 0)
  {
    return;
  }

  vtkPointData *pd = img->GetPointData();
  vtkCharArray *maskArray = vtkArrayDownCast<vtkCharArray>(pd->GetArray(maskArrayName));
  char *mask = maskArray->GetPointer(0);

  // use diy's serialization facilities
  diy::MemoryBuffer bb;

  int extent[6];
  img->GetExtent(extent);
  for (int k = extent[4]; k <= extent[5]; ++k)
  {
    for (int j = extent[2]; j <= extent[3]; ++j)
    {
      for (int i = extent[0]; i <= extent[1]; ++i)
      {
        int ijk[3] = { i, j, k };
        vtkIdType id = img->ComputePointId(ijk);
        if (mask[id])
        {
          PointList::IndexType idx;
          std::copy(ijk, ijk + 3, idx.data());
          points->Indices.push_back(idx);
          SerializeFieldData(pd, id, bb);
        }
      }
    }
  }
  points->Data.swap(bb.buffer); // get the serialized data buffer
}

// Sets the points from the PointList (points) to img. 'points' is modified
// in the process.
void SetPointsToImage(const std::vector<FieldMetaData> &fieldMetaData,
                      PointList &points, vtkImageData *img)
{
  vtkPointData *pd = img->GetPointData();
  InitializeFieldData(fieldMetaData, img->GetNumberOfPoints(), pd);

  diy::MemoryBuffer bb;
  bb.buffer.swap(points.Data);
  std::size_t numPoints = points.Indices.size();
  for (std::size_t i = 0; i < numPoints; ++i)
  {
    vtkIdType id = img->ComputePointId(points.Indices[i].data());
    DeserializeFieldData(bb, pd, id);
  }

  points.Indices.clear(); // reset the points structure to a valid empty state
}

//----------------------------------------------------------------------------
inline void ComputeGlobalBounds(diy::mpi::communicator &comm,
                                const double lbounds[6], double gbounds[6])
{
  Array<double, 3> localBoundsMin, localBoundsMax;
  for (std::size_t i = 0; i < 3; ++i)
  {
    localBoundsMin[i] = lbounds[2*i];
    localBoundsMax[i] = lbounds[2*i + 1];
  }

  Array<double, 3> globalBoundsMin, globalBoundsMax;
  diy::mpi::all_reduce(comm, localBoundsMin, globalBoundsMin,
                       diy::mpi::minimum<double>());
  diy::mpi::all_reduce(comm, localBoundsMax, globalBoundsMax,
                       diy::mpi::maximum<double>());

  for (std::size_t i = 0; i < 3; ++i)
  {
    gbounds[2*i] = globalBoundsMin[i];
    gbounds[2*i + 1] = globalBoundsMax[i];
  }
}

inline void GetGlobalFieldMetaData(diy::mpi::communicator &comm,
                                   vtkDataSetAttributes *data,
                                   std::vector<FieldMetaData> *metadata)
{
  std::vector<FieldMetaData> local;
  ExtractFieldMetaData(data, &local);

  // find a process that has field meta data information (choose the process with
  // minimum rank)
  int rank = local.size() ? comm.rank() : comm.size();
  int source;
  diy::mpi::all_reduce(comm, rank, source, diy::mpi::minimum<int>());

  if (source < comm.size()) // atleast one process has field meta data
  {
    diy::MemoryBuffer bb;
    if (comm.rank() == source)
    {
      diy::save(bb, local);
      bb.reset();
    }
    diy::mpi::broadcast(comm, bb.buffer, source);
    diy::load(bb, *metadata);
  }
}


//---------------------------------------------------------------------------
void Redistribute(void* blockp, const diy::ReduceProxy& srp,
                  const diy::RegularSwapPartners& partners)
{
  Block *b = static_cast<Block*>(blockp);
  unsigned round = srp.round();

  // step 1: dequeue all the incoming points and add them to this block's vector
  diy::Master::IncomingQueues &in = *srp.incoming();
  for (diy::Master::IncomingQueues::iterator i = in.begin(); i != in.end(); ++i)
  {
    while (i->second)
    {
      PointList::IndexType idx;
      srp.dequeue(i->first, idx);
      b->Points.Indices.push_back(idx);

      std::size_t beg = b->Points.Data.size();
      b->Points.Data.resize(beg + b->Points.DataSize);
      srp.dequeue(i->first, &b->Points.Data[beg], b->Points.DataSize);
    }
  }

  // final round
  if (srp.out_link().size() == 0)
  {
    return;
  }

  // find this block's position in the group
  int groupSize = srp.out_link().size();
  int myPos = 0;
  for (; myPos < groupSize; ++myPos)
  {
    if (srp.out_link().target(myPos).gid == srp.gid())
    {
      break;
    }
  }

  // step 2: redistribute this block's points among the blocks in the group
  int axis = partners.dim(round);
  int minIdx = b->Extent[2 * axis];
  int maxIdx = b->Extent[2 * axis + 1];
  int length = (maxIdx - minIdx + 1 + groupSize - 1) / groupSize;

  PointList myPoints;
  myPoints.DataSize = b->Points.DataSize; // initilize myPoints
  std::size_t numPoints = b->Points.Indices.size();
  for (size_t i = 0; i < numPoints; ++i)
  {
    PointList::IndexType idx = b->Points.Indices[i];
    const char *data = &b->Points.Data[i * b->Points.DataSize];

    int nlocs = 1;
    int loc[2] = { (idx[axis] - minIdx)/length, 0 };

    // duplicate shared point
    if (((idx[axis] - minIdx)%length == 0) && (loc[0] != 0))
    {
      loc[1] = loc[0] - 1;
      ++nlocs;
    }

    for (int j = 0; j < nlocs; ++j)
    {
      if (loc[j] == myPos)
      {
        myPoints.Indices.push_back(idx);
        myPoints.Data.insert(myPoints.Data.end(), data, data + myPoints.DataSize);
      }
      else
      {
        srp.enqueue(srp.out_link().target(loc[j]), idx);
        srp.enqueue(srp.out_link().target(loc[j]), data, myPoints.DataSize);
      }
    }
  }
  swap(b->Points, myPoints);

  // step 3: readjust extents for next round
  b->Extent[2*axis] = minIdx + (length * myPos);
  b->Extent[2*axis + 1] = std::min(b->Extent[2*axis] + length, maxIdx);
}


//----------------------------------------------------------------------------
inline diy::mpi::communicator GetDiyCommunicator(vtkMPIController *controller)
{
  vtkMPICommunicator *vtkcomm = vtkMPICommunicator::SafeDownCast(
    controller->GetCommunicator());
  return diy::mpi::communicator(*vtkcomm->GetMPIComm()->GetHandle());
}

} // anonymous namespace


//---------------------------------------------------------------------------
vtkPResampleToImage::vtkPResampleToImage()
  : Controller(NULL)
{
  this->SetController(vtkMultiProcessController::GetGlobalController());
}

//----------------------------------------------------------------------------
vtkPResampleToImage::~vtkPResampleToImage()
{
  this->SetController(NULL);
}

//----------------------------------------------------------------------------
void vtkPResampleToImage::PrintSelf(ostream& os, vtkIndent indent)
{
  this->Superclass::PrintSelf(os, indent);
  if (this->Controller)
  {
    this->Controller->PrintSelf(os, indent);
  }
}

//---------------------------------------------------------------------------
int vtkPResampleToImage::RequestData(vtkInformation *request,
                                     vtkInformationVector **inputVector,
                                     vtkInformationVector *outputVector)
{
  vtkMPIController *mpiCont = vtkMPIController::SafeDownCast(this->Controller);
  if (!mpiCont || mpiCont->GetNumberOfProcesses() == 1)
  {
    return this->Superclass::RequestData(request, inputVector, outputVector);
  }

  // get the info objects
  vtkInformation *inInfo = inputVector[0]->GetInformationObject(0);
  vtkInformation *outInfo = outputVector->GetInformationObject(0);

  // get the input and output
  vtkDataObject *input = inInfo->Get(vtkDataObject::DATA_OBJECT());
  vtkImageData *output = vtkImageData::SafeDownCast(
    outInfo->Get(vtkDataObject::DATA_OBJECT()));


  diy::mpi::communicator comm = GetDiyCommunicator(mpiCont);

  double localBounds[6];
  ComputeDataBounds(input, localBounds);

  double samplingBounds[6];
  if (this->UseInputBounds)
  {
    ComputeGlobalBounds(comm, localBounds, samplingBounds);
  }
  else
  {
    std::copy(this->SamplingBounds, this->SamplingBounds + 6, samplingBounds);
  }

  vtkNew<vtkImageData> mypiece;
  this->PerformResampling(input, samplingBounds, true, localBounds,
                          mypiece.GetPointer());


  // Ensure every node has fields' metadata information
  std::vector<FieldMetaData> pointFieldMetaData;
  GetGlobalFieldMetaData(comm, mypiece->GetPointData(), &pointFieldMetaData);

  // perform swap-reduce partitioning on probed points to decompose the domain
  // into non-overlapping rectangular regions
  diy::RoundRobinAssigner assigner(comm.size(), comm.size());

  int *updateExtent = this->GetUpdateExtent();
  diy::DiscreteBounds domain;
  for (int i = 0; i < 3; ++i)
  {
    domain.min[i] = updateExtent[2*i];
    domain.max[i] = updateExtent[2*i + 1];
  }

  diy::Master master(comm, 1, -1, &CreateBlock, &DestroyBlock);

  diy::RegularDecomposer<diy::DiscreteBounds> decomposer(3, domain, comm.size());
  decomposer.decompose(comm.rank(), assigner, master);

  // Set up master's block
  Block *block = master.block<Block>(0);
  std::copy(updateExtent, updateExtent + 6, block->Extent);
  block->Points.DataSize = ComputeSerializedFieldDataSize(pointFieldMetaData);
  GetPointsFromImage(mypiece.GetPointer(), this->GetMaskArrayName(),
                     &block->Points);

  diy::RegularSwapPartners  partners(decomposer, 2, false);
  diy::reduce(master, assigner, partners, &Redistribute);

  output->SetOrigin(mypiece->GetOrigin());
  output->SetSpacing(mypiece->GetSpacing());
  output->SetExtent(block->Extent);
  SetPointsToImage(pointFieldMetaData, block->Points, output);
  this->SetBlankPointsAndCells(output);

  return 1;
}


//----------------------------------------------------------------------------
namespace diy {

namespace mpi {
namespace detail {

template <class T, std::size_t Len>
struct mpi_datatype<Array<T, Len> >
{
  typedef Array<T, Len> ArrayType;

  static MPI_Datatype datatype() { return get_mpi_datatype<T>(); }
  static const void* address(const ArrayType& x) { return &x[0]; }
  static void* address(ArrayType& x) { return &x[0]; }
  static int count(const ArrayType&) { return Len; }
};

}
} // namespace mpi::detail


template<>
struct Serialization<FieldMetaData>
{
  static void save(BinaryBuffer& bb, const FieldMetaData& f)
  {
    diy::save(bb, f.Name);
    diy::save(bb, f.DataType);
    diy::save(bb, f.NumComponents);
    diy::save(bb, f.AttributeType);
  }

  static void load(BinaryBuffer& bb, FieldMetaData& f)
  {
    diy::load(bb, f.Name);
    diy::load(bb, f.DataType);
    diy::load(bb, f.NumComponents);
    diy::load(bb, f.AttributeType);
  }
};

} // namespace diy