File: vtkPResampleWithDataSet.cxx

package info (click to toggle)
vtk7 7.1.1%2Bdfsg1-12
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 125,776 kB
  • sloc: cpp: 1,539,582; ansic: 106,521; python: 78,038; tcl: 47,013; xml: 8,142; yacc: 5,040; java: 4,439; perl: 3,132; lex: 1,926; sh: 1,500; makefile: 122; objc: 83
file content (1014 lines) | stat: -rw-r--r-- 30,396 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkPResampleWithDataSet.cxx

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
#include "vtkPResampleWithDataSet.h"

#include "vtkArrayDispatch.h"
#include "vtkCharArray.h"
#include "vtkCompositeDataIterator.h"
#include "vtkCompositeDataProbeFilter.h"
#include "vtkCompositeDataSet.h"
#include "vtkDataArrayAccessor.h"
#include "vtkDataObject.h"
#include "vtkDataSet.h"
#include "vtkIdTypeArray.h"
#include "vtkInformation.h"
#include "vtkInformationVector.h"
#include "vtkMPI.h"
#include "vtkMPIController.h"
#include "vtkMPICommunicator.h"
#include "vtkMultiProcessController.h"
#include "vtkObjectFactory.h"
#include "vtkPointData.h"
#include "vtkPoints.h"
#include "vtkUnstructuredGrid.h"

#include "vtk_diy2.h"   // must include this before any diy header
VTKDIY2_PRE_INCLUDE
#include VTK_DIY2_HEADER(diy/assigner.hpp)
#include VTK_DIY2_HEADER(diy/link.hpp)
#include VTK_DIY2_HEADER(diy/master.hpp)
#include VTK_DIY2_HEADER(diy/mpi.hpp)
VTKDIY2_POST_INCLUDE

#include <algorithm>
#include <cmath>
#include <vector>


//---------------------------------------------------------------------------
// Algorithm of this filter:
// 1) Compute the bounds of all the blocks of Source.
// 2) Do an all_gather so that all the nodes know all the bounds.
// 3) Using Input blocks' bounds and Source bounds, find the communication
//    neighbors of each node.
// 4) Find and send the Input points that lie inside a neighbor's Source bounds.
//    The search is made faster by using a point lookup structure
//    (RegularPartition or BalancedPartition bellow).
// 5) Perform resampling on local Input blocks.
// 6) Perform resampling on points received from neighbors.
// 7) Send the resampled points back to the neighbors they were received from.
// 8) Receive resampled points from neighbors and update local blocks of output.
//    Since points of a single Input block can overlap multiple Source blocks
//    and since different Source blocks can have different arrays (Partial Arrays),
//    it is possible that the points of an output block will have different arrays.
//    Remove arrays from a block that are not valid for all its points.
//---------------------------------------------------------------------------


vtkStandardNewMacro(vtkPResampleWithDataSet);

vtkCxxSetObjectMacro(vtkPResampleWithDataSet, Controller, vtkMultiProcessController);

//---------------------------------------------------------------------------
vtkPResampleWithDataSet::vtkPResampleWithDataSet()
  : Controller(NULL), UseBalancedPartitionForPointsLookup(false)
{
  this->SetController(vtkMultiProcessController::GetGlobalController());
}

//----------------------------------------------------------------------------
vtkPResampleWithDataSet::~vtkPResampleWithDataSet()
{
  this->SetController(NULL);
}

//----------------------------------------------------------------------------
void vtkPResampleWithDataSet::PrintSelf(ostream& os, vtkIndent indent)
{
  this->Superclass::PrintSelf(os, indent);
  if (this->Controller)
  {
    this->Controller->PrintSelf(os, indent);
  }
  os << indent << "Points lookup partitioning: "
     << (this->UseBalancedPartitionForPointsLookup ? "Balanced" : "Regular")
     << endl;
}


namespace {

//----------------------------------------------------------------------------
struct Point
{
  double Position[3];
  vtkIdType PointId;
  int BlockID;
};


//----------------------------------------------------------------------------
class Partition
{
public:
  virtual void CreatePartition(const std::vector<vtkDataSet*> &blocks) = 0;
  virtual void FindPointsInBounds(const double bounds[6],
                                  std::vector<Point> &points) const = 0;
};

// Partitions the points into spatially regular sized bins. The bins may contain
// widely varying number of points.
class RegularPartition : public Partition
{
public:
  void CreatePartition(const std::vector<vtkDataSet*> &blocks)
  {
    // compute the bounds of the composite dataset
    size_t totalNumberOfPoints = 0;
    this->Bounds[0] = this->Bounds[2] = this->Bounds[4] = VTK_DOUBLE_MAX;
    this->Bounds[1] = this->Bounds[3] = this->Bounds[5] = VTK_DOUBLE_MIN;
    for (size_t i = 0; i < blocks.size(); ++i)
    {
      vtkDataSet *ds = blocks[i];
      if (!ds)
      {
        continue;
      }

      totalNumberOfPoints += ds->GetNumberOfPoints();
      double bounds[6];
      ds->GetBounds(bounds);

      for (int j = 0; j < 3; ++j)
      {
          this->Bounds[2*j] = std::min(this->Bounds[2*j], bounds[2*j]);
          this->Bounds[2*j + 1] = std::max(this->Bounds[2*j + 1], bounds[2*j + 1]);
      }
    }

    if (totalNumberOfPoints == 0)
    {
      return;
    }

    // compute a regualr partitioning of the space
    int nbins = 1;
    double dim = 0; // the dimensionality of the dataset
    for (int i = 0; i < 3; ++i)
    {
      if ((this->Bounds[2*i + 1] - this->Bounds[2*i]) > 0.0)
      {
        ++dim;
      }
    }
    if (dim != 0.0)
    {
      nbins = static_cast<int>(std::ceil(
        std::pow(static_cast<double>(totalNumberOfPoints), (1.0/dim)) /
        std::pow(static_cast<double>(NUM_POINTS_PER_BIN), (1.0/dim)) ));
    }
    for (int i = 0; i < 3; ++i)
    {
      this->NumBins[i] = ((this->Bounds[2*i + 1] - this->Bounds[2*i]) > 0.0) ?
                         nbins : 1;
      this->BinSize[i] = (this->Bounds[2*i + 1] - this->Bounds[2*i]) /
                         static_cast<double>(NumBins[i]);

      // slightly increase bin size to include points on this->Bounds[2*i]
      double e = 1.0/std::max(1000.0, static_cast<double>(nbins + 1));
      if (this->BinSize[i] > 0.0)
      {
        e *= this->BinSize[i]; // make e relative to binsize
      }
      this->BinSize[i] += e;
    }

    // compute the bin id of each point
    this->Nodes.reserve(totalNumberOfPoints);
    for (size_t i = 0; i < blocks.size(); ++i)
    {
      vtkDataSet *ds = blocks[i];
      if (!ds)
      {
        continue;
      }

      vtkIdType numPts = ds->GetNumberOfPoints();
      for (vtkIdType j = 0; j < numPts; ++j)
      {
        double pos[3];
        ds->GetPoint(j, pos);

        int bin[3];
        bin[0] = static_cast<int>((pos[0] - this->Bounds[0]) / (this->BinSize[0]));
        bin[1] = static_cast<int>((pos[1] - this->Bounds[2]) / (this->BinSize[1]));
        bin[2] = static_cast<int>((pos[2] - this->Bounds[4]) / (this->BinSize[2]));

        Node n;
        n.BinId = bin[0] + this->NumBins[0]*bin[1] + this->NumBins[0]*this->NumBins[1]*bin[2];
        n.Pt.BlockID = i;
        n.Pt.PointId = j;
        std::copy(pos, pos + 3, n.Pt.Position);
        this->Nodes.push_back(n);
      }
    }
    // sort by BinId
    std::sort(this->Nodes.begin(), this->Nodes.end());

    // map from bin id to first node of the bin
    size_t totalBins = this->NumBins[0] * this->NumBins[1] * this->NumBins[2];
    this->Bins.resize(totalBins + 1);
    for (size_t i = 0, j = 0; i <= totalBins; ++i)
    {
      this->Bins[i] = j;
      while (j < totalNumberOfPoints && this->Nodes[j].BinId == i)
      {
        ++j;
      }
    }
  }

  void FindPointsInBounds(const double bounds[6], std::vector<Point> &points) const
  {
    if (this->Nodes.empty())
    {
      return;
    }

    double searchBds[6];
    for (int i = 0; i < 3; ++i)
    {
      searchBds[2*i] = std::max(bounds[2*i], this->Bounds[2*i]);
      searchBds[2*i + 1] = std::min(bounds[2*i + 1], this->Bounds[2*i + 1]);
    }

    int minBin[3], maxBin[3];
    for (int i = 0; i < 3; ++i)
    {
      minBin[i] = static_cast<int>((searchBds[2*i] - this->Bounds[2*i])/(this->BinSize[i]));
      maxBin[i] = static_cast<int>((searchBds[2*i + 1] - this->Bounds[2*i])/(this->BinSize[i]));
    }

    for (int k = minBin[2]; k <= maxBin[2]; ++k)
    {
      bool passAllZ = (k > minBin[2] && k < maxBin[2]);
      for (int j = minBin[1]; j <= maxBin[1]; ++j)
      {
        bool passAllY = (j > minBin[1] && j < maxBin[1]);
        for (int i = minBin[0]; i <= maxBin[0]; ++i)
        {
          bool passAllX = (i > minBin[0] && i < maxBin[0]);

          vtkIdType bid = i + j*this->NumBins[0] + k*this->NumBins[0]*this->NumBins[1];
          size_t binBegin = this->Bins[bid];
          size_t binEnd = this->Bins[bid + 1];
          if (binBegin == binEnd) // empty bin
          {
            continue;
          }
          if (passAllX && passAllY && passAllZ)
          {
            for (size_t p = binBegin; p < binEnd; ++p)
            {
              points.push_back(this->Nodes[p].Pt);
            }
          }
          else
          {
            for (size_t p = binBegin; p < binEnd; ++p)
            {
              const double *pos = this->Nodes[p].Pt.Position;
              if (pos[0] >= searchBds[0] && pos[0] <= searchBds[1] &&
                  pos[1] >= searchBds[2] && pos[1] <= searchBds[3] &&
                  pos[2] >= searchBds[4] && pos[2] <= searchBds[5])
              {
                points.push_back(this->Nodes[p].Pt);
              }
            }
          }
        }
      }
    }
  }

private:
  enum
  {
    NUM_POINTS_PER_BIN = 512
  };

  struct Node
  {
    Point Pt;
    size_t BinId;

    bool operator<(const Node &n) const
    {
      return this->BinId < n.BinId;
    }
  };

  std::vector<Node> Nodes;
  std::vector<size_t> Bins;
  double Bounds[6];
  int NumBins[3];
  double BinSize[3];
};

// Partitions the points into balanced bins. Each bin contains similar number
// of points
class BalancedPartition : public Partition
{
public:
  void CreatePartition(const std::vector<vtkDataSet*> &blocks)
  {
    // count total number of points
    vtkIdType totalNumberOfPoints = 0;
    for (size_t i = 0; i < blocks.size(); ++i)
    {
      totalNumberOfPoints += blocks[i] ? blocks[i]->GetNumberOfPoints() : 0;
    }

    // copy points and compute dataset bounds
    this->Nodes.reserve(totalNumberOfPoints);
    this->Bounds[0] = this->Bounds[2] = this->Bounds[4] = VTK_DOUBLE_MAX;
    this->Bounds[1] = this->Bounds[3] = this->Bounds[5] = VTK_DOUBLE_MIN;
    for (size_t i = 0; i < blocks.size(); ++i)
    {
      vtkDataSet *ds = blocks[i];
      if (!ds)
      {
        continue;
      }

      vtkIdType numPts = ds->GetNumberOfPoints();
      for (vtkIdType j = 0; j < numPts; ++j)
      {
        double pos[3];
        ds->GetPoint(j, pos);

        Point pt;
        pt.PointId = j;
        pt.BlockID = i;
        std::copy(pos, pos + 3, pt.Position);
        this->Nodes.push_back(pt);

        for (int k = 0; k < 3; ++k)
        {
          this->Bounds[2*k] = std::min(this->Bounds[2*k], pos[k]);
          this->Bounds[2*k + 1] = std::max(this->Bounds[2*k + 1], pos[k]);
        }
      }
    }

    // approximate number of nodes in the tree
    vtkIdType splitsSize = totalNumberOfPoints/(NUM_POINTS_PER_BIN/2);
    this->Splits.resize(splitsSize);
    this->RecursiveSplit(&this->Nodes[0], &this->Nodes[totalNumberOfPoints],
                         &this->Splits[0], &this->Splits[splitsSize], 0);
  }

  void FindPointsInBounds(const double bounds[6], std::vector<Point> &points) const
  {
    int tag = 0;
    for (int i = 0; i < 3; ++i)
    {
      if (this->Bounds[2*i] > bounds[2*i + 1] || this->Bounds[2*i + 1] < bounds[2*i])
      {
        return;
      }
      tag |= (this->Bounds[2*i] >= bounds[2*i]) ? (1<<(2*i)) : 0;
      tag |= (this->Bounds[2*i + 1] <= bounds[2*i + 1]) ? (1<<(2*i + 1)) : 0;
    }

    vtkIdType numPoints = this->Nodes.size();
    vtkIdType splitSize = this->Splits.size();
    this->RecursiveSearch(bounds, &this->Nodes[0], &this->Nodes[numPoints],
                          &this->Splits[0], &this->Splits[splitSize], 0, tag,
                          points);
  }

private:
  enum
  {
    NUM_POINTS_PER_BIN = 512
  };

  struct PointComp
  {
    PointComp(int axis) : Axis(axis)
    { }

    bool operator()(const Point &p1, const Point& p2) const
    {
      return p1.Position[this->Axis] < p2.Position[this->Axis];
    }

    int Axis;
  };

  void RecursiveSplit(Point *begin, Point *end, double *sbegin, double *send,
                      int level)
  {
    if ((end - begin) <= NUM_POINTS_PER_BIN)
    {
      return;
    }

    int axis = level%3;
    Point *mid = begin + (end - begin)/2;
    std::nth_element(begin, mid, end, PointComp(axis));
    *(sbegin++) = mid->Position[axis];

    double *smid = sbegin + ((send - sbegin)/2);
    this->RecursiveSplit(begin, mid, sbegin, smid, level + 1);
    this->RecursiveSplit(mid, end, smid, send, level + 1);
  }

  void RecursiveSearch(const double bounds[6], const Point *begin, const Point *end,
                       const double *sbegin, const double *send, int level, int tag,
                       std::vector<Point> &points) const
  {
    if (tag == 63)
    {
      points.insert(points.end(), begin, end);
      return;
    }
    if ((end - begin) <= NUM_POINTS_PER_BIN)
    {
      for (; begin != end; ++begin)
      {
        const double *pos = begin->Position;
        if (pos[0] >= bounds[0] && pos[0] <= bounds[1] &&
            pos[1] >= bounds[2] && pos[1] <= bounds[3] &&
            pos[2] >= bounds[4] && pos[2] <= bounds[5])
        {
          points.push_back(*begin);
        }
      }
      return;
    }

    int axis = level%3;
    const Point *mid = begin + (end - begin)/2;
    const double split = *(sbegin++);
    const double *smid = sbegin + ((send - sbegin)/2);
    if (split >= bounds[2*axis])
    {
      int ltag = tag | ((split <= bounds[2*axis + 1]) ? (1<<(2*axis + 1)) : 0);
      this->RecursiveSearch(bounds, begin, mid, sbegin, smid, level + 1, ltag,
                            points);
    }
    if (split <= bounds[2*axis + 1])
    {
      int rtag = tag | ((split >= bounds[2*axis]) ? (1<<(2*axis)) : 0);
      this->RecursiveSearch(bounds, mid, end, smid, send, level + 1, rtag,
                            points);
    }
  }

  std::vector<double> Splits;
  std::vector<Point> Nodes;
  double Bounds[6];
};


//----------------------------------------------------------------------------
// Iterate over each dataset in a composite dataset and execute func
template <typename Functor>
void ForEachDataSetBlock(vtkDataObject *data, const Functor &func)
{
  if (data->IsA("vtkDataSet"))
  {
    func(static_cast<vtkDataSet*>(data));
  }
  else if (data->IsA("vtkCompositeDataSet"))
  {
    vtkCompositeDataSet *composite = static_cast<vtkCompositeDataSet*>(data);

    vtkSmartPointer<vtkCompositeDataIterator> iter;
    iter.TakeReference(composite->NewIterator());
    for (iter->InitReverseTraversal(); !iter->IsDoneWithTraversal(); iter->GoToNextItem())
    {
      func(static_cast<vtkDataSet*>(iter->GetCurrentDataObject()));
    }
  }
}

// For each valid block add its bounds to boundsArray
struct GetBlockBounds
{
  GetBlockBounds(std::vector<double> &boundsArray) : BoundsArray(&boundsArray)
  { }

  void operator()(vtkDataSet *block) const
  {
    if (block)
    {
      double bounds[6];
      block->GetBounds(bounds);
      this->BoundsArray->insert(this->BoundsArray->end(), bounds, bounds + 6);
    }
  }

  std::vector<double> *BoundsArray;
};

struct FlattenCompositeDataset
{
  FlattenCompositeDataset(std::vector<vtkDataSet*> &blocks) : Blocks(&blocks)
  { }

  void operator()(vtkDataSet *block) const
  {
    this->Blocks->push_back(block);
  }

  std::vector<vtkDataSet*> *Blocks;
};


//----------------------------------------------------------------------------
void CopyDataSetStructure(vtkDataObject *input, vtkDataObject *output)
{
  if (input->IsA("vtkDataSet"))
  {
    static_cast<vtkDataSet*>(output)->CopyStructure(static_cast<vtkDataSet*>(input));
  }
  else if (input->IsA("vtkCompositeDataSet"))
  {
    vtkCompositeDataSet *compositeIn = static_cast<vtkCompositeDataSet*>(input);
    vtkCompositeDataSet *compositeOut = static_cast<vtkCompositeDataSet*>(output);
    compositeOut->CopyStructure(compositeIn);

    vtkSmartPointer<vtkCompositeDataIterator> iter;
    iter.TakeReference(compositeIn->NewIterator());
    for (iter->InitReverseTraversal(); !iter->IsDoneWithTraversal(); iter->GoToNextItem())
    {
      vtkDataSet *in = static_cast<vtkDataSet*>(iter->GetCurrentDataObject());
      if (in)
      {
        vtkDataSet *out = in->NewInstance();
        out->CopyStructure(in);
        compositeOut->SetDataSet(iter, out);
        out->Delete();
      }
    }
  }
}

inline bool CheckBoundsIntersect(const double b1[6], const double b2[6])
{
  double intersection[6];
  for (int i = 0; i < 3; ++i)
  {
    intersection[2*i] = std::max(b1[2*i], b2[2*i]);
    intersection[2*i + 1] = std::min(b1[2*i + 1], b2[2*i + 1]);
    if ((intersection[2*i + 1] - intersection[2*i]) < 0.0)
    {
      return false;
    }
  }
  return true;
}

// Find all the neighbors that this rank will need to send to and recv from.
// Based on the intersection of this rank's input bounds with remote's source
// bounds.
void FindNeighbors(diy::mpi::communicator comm,
                   std::vector<std::vector<double> > &sourceBounds,
                   std::vector<vtkDataSet*> &inputBlocks,
                   std::vector<int> &neighbors)
{
  for (int gid = 0; gid < comm.size(); ++gid)
  {
    if (gid == comm.rank())
    {
      continue;
    }

    std::vector<double> &boundsArray = sourceBounds[gid];
    for (size_t next = 0; next < boundsArray.size(); next += 6)
    {
      double *sbounds = &boundsArray[next];
      bool intersects = false;
      for (size_t b = 0; b < inputBlocks.size(); ++b)
      {
        vtkDataSet *ds = inputBlocks[b];
        if (ds)
        {
          double *ibounds = ds->GetBounds();
          if ((intersects = CheckBoundsIntersect(sbounds, ibounds)) == true)
          {
            break;
          }
        }
      }
      if (intersects)
      {
        neighbors.push_back(gid);
        break;
      }
    }
  }

  std::vector<std::vector<int> > allNbrs;
  diy::mpi::all_gather(comm, neighbors, allNbrs);
  for (int gid = 0; gid < comm.size(); ++gid)
  {
    if (gid == comm.rank())
    {
      continue;
    }

    std::vector<int> &nbrs = allNbrs[gid];
    if ((std::find(nbrs.begin(), nbrs.end(), comm.rank()) != nbrs.end()) &&
        (std::find(neighbors.begin(), neighbors.end(), gid) == neighbors.end()))
    {
      neighbors.push_back(gid);
    }
  }
}


//----------------------------------------------------------------------------
struct DiyBlock
{
  std::vector<std::vector<double> > SourceBlocksBounds;
  std::vector<vtkDataSet*> InputBlocks;
  std::vector<vtkDataSet*> OutputBlocks;
  Partition *PointsLookup;
};

// Send input points that overlap remote's source bounds
void FindPointsToSend(DiyBlock *block, const diy::Master::ProxyWithLink& cp,
                      void*)
{
  diy::Link *link = cp.link();

  for (int i = 0; i < link->size(); ++i)
  {
    diy::BlockID neighbor = link->target(i);
    std::vector<Point> points;
    std::vector<double> &boundsArray = block->SourceBlocksBounds[neighbor.proc];
    for (size_t next = 0; next < boundsArray.size(); next += 6)
    {
      double *sbounds = &boundsArray[next];
      block->PointsLookup->FindPointsInBounds(sbounds, points);
    }
    if (!points.empty())
    {
      cp.enqueue(neighbor, points);
    }
  }
}


class EnqueueDataArray
{
public:
  EnqueueDataArray(const diy::Master::ProxyWithLink& cp, const diy::BlockID &dest,
                   const char *masks)
    : Proxy(&cp), Dest(dest), Masks(masks)
  { }

  template <typename ArrayType>
  void operator()(ArrayType *array) const
  {
    vtkDataArrayAccessor<ArrayType> accessor(array);

    this->Proxy->enqueue(this->Dest, std::string(array->GetName()));
    this->Proxy->enqueue(this->Dest, array->GetDataType());
    this->Proxy->enqueue(this->Dest, array->GetNumberOfComponents());

    vtkIdType numTuples = array->GetNumberOfTuples();
    int numComponents = array->GetNumberOfComponents();
    for (vtkIdType i = 0; i < numTuples; ++i)
    {
      if (Masks[i])
      {
        for (int j = 0; j < numComponents; ++j)
        {
          this->Proxy->enqueue(this->Dest, accessor.Get(i, j));
        }
      }
    }
  }

private:
  const diy::Master::ProxyWithLink *Proxy;
  diy::BlockID Dest;
  const char *Masks;
};

// Perform resampling of local and remote input points
void PerformResampling(DiyBlock *block, const diy::Master::ProxyWithLink& cp,
                       void *probep)
{
  vtkCompositeDataProbeFilter *prober = static_cast<vtkCompositeDataProbeFilter*>(probep);
  diy::Link *link = cp.link();

  // local points
  for (size_t i = 0; i < block->InputBlocks.size(); ++i)
  {
    vtkDataSet *in = block->InputBlocks[i];
    if (in)
    {
      prober->SetInputData(in);
      prober->Update();
      block->OutputBlocks[i]->DeepCopy(prober->GetOutput());
    }
  }
  // remote points
  for (int i = 0; i < link->size(); ++i)
  {
    diy::BlockID bid = link->target(i);
    if (!cp.incoming(bid.gid))
    {
      continue;
    }

    std::vector<Point> points;
    cp.dequeue(bid.gid, points);

    vtkNew<vtkPoints> pts;
    pts->SetDataTypeToDouble();
    pts->Allocate(points.size());
    for (size_t j = 0; j < points.size(); ++j)
    {
      pts->InsertNextPoint(points[j].Position);
    }

    vtkNew<vtkUnstructuredGrid> ds;
    ds->SetPoints(pts.GetPointer());
    prober->SetInputData(ds.GetPointer());
    prober->Update();
    vtkDataSet *result = prober->GetOutput();


    vtkIdType numberOfValidPoints = prober->GetValidPoints()->GetNumberOfTuples();
    if (numberOfValidPoints == 0)
    {
      continue;
    }

    const char *maskArrayName = prober->GetValidPointMaskArrayName();
    vtkPointData *resPD = result->GetPointData();
    const char *masks = vtkCharArray::SafeDownCast(resPD->GetArray(maskArrayName))->GetPointer(0);

    std::vector<int> blockIds;
    std::vector<vtkIdType> pointIds;
    blockIds.reserve(numberOfValidPoints);
    pointIds.reserve(numberOfValidPoints);
    for (size_t j = 0; j < points.size(); ++j)
    {
      if (masks[j]) // send only valid points
      {
        blockIds.push_back(points[j].BlockID);
        pointIds.push_back(points[j].PointId);
      }
    }

    cp.enqueue(bid, blockIds);
    cp.enqueue(bid, pointIds);

    EnqueueDataArray enqueuer(cp, bid, masks);
    for (vtkIdType j = 0; j < resPD->GetNumberOfArrays(); ++j)
    {
      vtkDataArray *field = resPD->GetArray(j);
      if (!vtkArrayDispatch::Dispatch::Execute(field, enqueuer))
      {
        vtkGenericWarningMacro(<< "Dispatch failed, fallback to vtkDataArray Get/Set");
        enqueuer(field);
      }
    }
  }
}

class DequeueDataArrayTuple
{
public:
  DequeueDataArrayTuple(const diy::Master::ProxyWithLink &proxy, int sourceGID,
                        vtkIdType tuple)
    : Proxy(&proxy), SourceGID(sourceGID), Tuple(tuple)
  { }

  template <typename ArrayType>
  void operator()(ArrayType *array) const
  {
    vtkDataArrayAccessor<ArrayType> accessor(array);
    for (int i = 0; i < array->GetNumberOfComponents(); ++i)
    {
      typename vtkDataArrayAccessor<ArrayType>::APIType val;
      this->Proxy->dequeue(this->SourceGID, val);
      accessor.Set(this->Tuple, i, val);
    }
  }

private:
  const diy::Master::ProxyWithLink *Proxy;
  int SourceGID;
  vtkIdType Tuple;
};

// receive resampled points
void ReceiveResampledPoints(DiyBlock *block, const diy::Master::ProxyWithLink &cp,
                            void *maskArrayNamePtr)
{
  const char *maskArrayName = reinterpret_cast<char*>(maskArrayNamePtr);

  int numBlocks = block->InputBlocks.size();
  std::vector<std::map<std::string, int> > arrayReceiveCounts(numBlocks);
  std::vector<int> receiveFlags(numBlocks);

  diy::Master::IncomingQueues &in = *cp.incoming();
  for (diy::Master::IncomingQueues::iterator i = in.begin(); i != in.end(); ++i)
  {
    if (!i->second)
    {
      continue;
    }

    std::vector<int> blockIds;
    std::vector<vtkIdType> pointIds;
    cp.dequeue(i->first, blockIds);
    cp.dequeue(i->first, pointIds);
    size_t tuplesToRecv = pointIds.size();

    while (i->second)
    {
      std::string name;
      int type;
      int numComponents;
      cp.dequeue(i->first, name);
      cp.dequeue(i->first, type);
      cp.dequeue(i->first, numComponents);

      std::fill(receiveFlags.begin(), receiveFlags.end(), 0);

      for (size_t j = 0; j < tuplesToRecv; ++j)
      {
        receiveFlags[blockIds[j]] = 1; // mark the blocks that have received this array
        vtkDataSet *ds = block->OutputBlocks[blockIds[j]];
        vtkDataArray *da = ds->GetPointData()->GetArray(name.c_str());
        if (!da)
        {
          da = vtkDataArray::CreateDataArray(type);
          da->SetName(name.c_str());
          da->SetNumberOfComponents(numComponents);
          da->SetNumberOfTuples(ds->GetNumberOfPoints());
          if (name == maskArrayName)
          {
            vtkCharArray *maskArray = vtkCharArray::SafeDownCast(da);
            for (vtkIdType k = 0; k < maskArray->GetNumberOfTuples(); ++k)
            {
              maskArray->SetTypedComponent(k, 0, 0);
            }
          }
          ds->GetPointData()->AddArray(da);
        }

        DequeueDataArrayTuple dequeuer(cp, i->first, pointIds[j]);
        if (!vtkArrayDispatch::Dispatch::Execute(da, dequeuer))
        {
          vtkGenericWarningMacro(<< "Dispatch failed, fallback to vtkDataArray Get/Set");
          dequeuer(da);
        }
      }

      for (int j = 0; j < numBlocks; ++j)
      {
        if (receiveFlags[j])
        {
          // track the number of different sources an array was received from
          // for each block.
          ++arrayReceiveCounts[j][name];
        }
      }
    }
  }

  // Discard arrays that were only received from some of the sources. Such arrays
  // will have invalid values for points that have valid masks from other sources.
  for (int i = 0; i < numBlocks; ++i)
  {
    std::map<std::string, int> &recvCnt = arrayReceiveCounts[i];
    int maxCount = 0;
    for (std::map<std::string, int>::iterator it = recvCnt.begin();
         it != recvCnt.end(); ++it)
    {
      maxCount = std::max(maxCount, it->second);
    }
    for (std::map<std::string, int>::iterator it = recvCnt.begin();
         it != recvCnt.end(); ++it)
    {
      if (it->second != maxCount)
      {
        block->OutputBlocks[i]->GetPointData()->RemoveArray(it->first.c_str());
      }
    }
  }
}


//----------------------------------------------------------------------------
inline diy::mpi::communicator GetDiyCommunicator(vtkMPIController *controller)
{
  vtkMPICommunicator *vtkcomm = vtkMPICommunicator::SafeDownCast(
    controller->GetCommunicator());
  return diy::mpi::communicator(*vtkcomm->GetMPIComm()->GetHandle());
}

} // anonymous namespace


//---------------------------------------------------------------------------
int vtkPResampleWithDataSet::RequestData(vtkInformation *request,
                                     vtkInformationVector **inputVector,
                                     vtkInformationVector *outputVector)
{
  vtkMPIController *mpiCont = vtkMPIController::SafeDownCast(this->Controller);
  if (!mpiCont || mpiCont->GetNumberOfProcesses() == 1)
  {
    return this->Superclass::RequestData(request, inputVector, outputVector);
  }

  vtkInformation *inInfo = inputVector[0]->GetInformationObject(0);
  vtkInformation *sourceInfo = inputVector[1]->GetInformationObject(0);
  vtkInformation *outInfo = outputVector->GetInformationObject(0);


  diy::mpi::communicator comm = GetDiyCommunicator(mpiCont);

  DiyBlock block;  // one diy-block per rank
  int mygid = comm.rank();

  // compute and communicate the bounds of all the source blocks in all the ranks
  vtkDataObject *source = sourceInfo->Get(vtkDataObject::DATA_OBJECT());
  std::vector<double> srcBounds;
  ForEachDataSetBlock(source, GetBlockBounds(srcBounds));
  diy::mpi::all_gather(comm, srcBounds, block.SourceBlocksBounds);

  // copy the input structure to output
  vtkDataObject *input = inInfo->Get(vtkDataObject::DATA_OBJECT());
  vtkDataObject *output = outInfo->Get(vtkDataObject::DATA_OBJECT());
  CopyDataSetStructure(input, output);
  // flatten the composite datasets to make them easier to handle
  ForEachDataSetBlock(input, FlattenCompositeDataset(block.InputBlocks));
  ForEachDataSetBlock(output, FlattenCompositeDataset(block.OutputBlocks));

  // partition the input points, using the user specified partition algorithm,
  // to make it easier to find the set of points inside a bounding-box
  RegularPartition regular;
  BalancedPartition balanced;
  if (this->UseBalancedPartitionForPointsLookup)
  {
    block.PointsLookup = &balanced;
  }
  else
  {
    block.PointsLookup = &regular;
  }
  block.PointsLookup->CreatePartition(block.InputBlocks);

  // find the neighbors of this rank for communication purposes
  std::vector<int> neighbors;
  FindNeighbors(comm, block.SourceBlocksBounds, block.InputBlocks, neighbors);

  diy::Link *link = new diy::Link;
  for (size_t i = 0; i < neighbors.size(); ++i)
  {
    diy::BlockID bid;
    bid.gid = bid.proc = neighbors[i];
    link->add_neighbor(bid);
  }

  diy::Master master(comm, 1);
  master.add(mygid, &block, link);


  this->Prober->SetSourceData(source);
  // find and send local points that overlap remote source blocks
  master.foreach<DiyBlock>(&FindPointsToSend);
  master.exchange();
  // perform resampling on local and remote points
  master.foreach<DiyBlock>(&PerformResampling, this->Prober.GetPointer());
  master.exchange();
  // receive resampled points and set the values in output
  master.foreach<DiyBlock>(&ReceiveResampledPoints,
                           this->Prober->GetValidPointMaskArrayName());

  // mark the blank points and cells of output
  for (size_t i = 0; i < block.OutputBlocks.size(); ++i)
  {
    vtkDataSet *ds = block.OutputBlocks[i];
    if (ds)
    {
      this->SetBlankPointsAndCells(ds);
    }
  }

  return 1;
}