File: TestRandomPOrderStatisticsMPI.cxx

package info (click to toggle)
vtk7 7.1.1%2Bdfsg1-12
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 125,776 kB
  • sloc: cpp: 1,539,582; ansic: 106,521; python: 78,038; tcl: 47,013; xml: 8,142; yacc: 5,040; java: 4,439; perl: 3,132; lex: 1,926; sh: 1,500; makefile: 122; objc: 83
file content (597 lines) | stat: -rw-r--r-- 17,363 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
/*=========================================================================

Program:   Visualization Toolkit
Module:    TestRandomPOrderStatisticsMPI.cxx

Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
/*
 * Copyright 2011 Sandia Corporation.
 * Under the terms of Contract DE-AC04-94AL85000, there is a non-exclusive
 * license for use of this work by or on behalf of the
 * U.S. Government. Redistribution and use in source and binary forms, with
 * or without modification, are permitted provided that this Notice and any
 * statement of authorship are reproduced on all copies.
 */
// .SECTION Thanks
// Thanks to Philippe Pebay for implementing this test.

#include <mpi.h>

#include "vtkOrderStatistics.h"
#include "vtkPOrderStatistics.h"

#include "vtkIdTypeArray.h"
#include "vtkIntArray.h"
#include "vtkMath.h"
#include "vtkMPIController.h"
#include "vtkMultiBlockDataSet.h"
#include "vtkStdString.h"
#include "vtkStringArray.h"
#include "vtkTable.h"
#include "vtkTimerLog.h"
#include "vtkVariantArray.h"

#include "vtksys/CommandLineArguments.hxx"
#include <map>

namespace
{

struct RandomOrderStatisticsArgs
{
  int nVals;
  double stdev;
  bool skipInt;
  bool skipString;
  bool quantize;
  int maxHistoSize;
  int* retVal;
  int ioRank;
};

// This will be called by all processes
void RandomOrderStatistics( vtkMultiProcessController* controller, void* arg )
{
  // Get test parameters
  RandomOrderStatisticsArgs* args = reinterpret_cast<RandomOrderStatisticsArgs*>( arg );
  *(args->retVal) = 0;

  // Get MPI communicator
  vtkMPICommunicator* com = vtkMPICommunicator::SafeDownCast( controller->GetCommunicator() );

  // Get local rank
  int myRank = com->GetLocalProcessId();

  // Seed random number generator
  vtkMath::RandomSeed( static_cast<int>( vtkTimerLog::GetUniversalTime() ) * ( myRank + 1 ) );

  // Generate an input table that contains samples of:
  // 1. A truncated Gaussian pseudo-random variable (vtkIntArray)
  // 2. A uniform pseudo-random variable of characters (vtkStringArray)
  vtkStdString columnNames[] = { "Rounded Normal Integer", "Uniform Character" };

  // Infer number and type of generated variables based on command line options
  int nVariables = 0;
  std::map<int,bool> isVariableAString;
  if ( ! args->skipInt )
  {
    isVariableAString[nVariables] = false;
    ++ nVariables;
  }
  if ( ! args->skipString )
  {
    isVariableAString[nVariables] = true;
    ++ nVariables;
  }

  // Prepare column of integers
  vtkIntArray* intArray = vtkIntArray::New();
  intArray->SetNumberOfComponents( 1 );
  intArray->SetName( columnNames[0] );

  // Prepare column of strings
  vtkStringArray* strArray = vtkStringArray::New();
  strArray->SetNumberOfComponents( 1 );
  strArray->SetName( columnNames[1] );

  // Storage for pseudo-random values and local extrema
  int* v = new int[nVariables];
  int* min_l = new int[nVariables];
  int* max_l = new int[nVariables];

  // Initial current variable index
  int idx = 0;

  // Store first integer value
  if ( ! args->skipInt )
  {
    v[idx] = static_cast<int>( vtkMath::Round( vtkMath::Gaussian() * args->stdev ) );
    intArray->InsertNextValue( v[idx] );
    ++ idx;
  }

  // Store first string value
  if ( ! args->skipString )
  {
    v[idx] = 96 + vtkMath::Ceil( vtkMath::Random() * 26 );
    char c = static_cast<char>( v[idx] );
    vtkStdString s( &c, 1 );
    strArray->InsertNextValue( s );
  }

  // Initialize local extrema
  for ( int i = 0; i < nVariables; ++ i )
  {
    min_l[i] = v[i];
    max_l[i] = v[i];
  }

  // Continue up to nVals values have been generated
  for ( int r = 1; r < args->nVals; ++ r )
  {
    // Initial current variable index
    idx = 0;

    // Store current integer value
    if ( ! args->skipInt )
    {
      v[idx] = static_cast<int>( vtkMath::Round( vtkMath::Gaussian() * args->stdev ) );
      intArray->InsertNextValue( v[idx] );
      ++ idx;
    }

    // Store current string value
    if ( ! args->skipString )
    {
      v[idx] = 96 + vtkMath::Ceil( vtkMath::Random() * 26 );
      char c = static_cast<char>( v[idx] );
      vtkStdString s( &c, 1 );
      strArray->InsertNextValue( s );
    }

    // Update local extrema
    for ( int i = 0; i < nVariables; ++ i )
    {
      if ( v[i] < min_l[i] )
      {
        min_l[i] = v[i];
      }
      else if ( v[i] > max_l[i] )
      {
        max_l[i] = v[i];
      }
    } // i
  } // r

  // Create input table
  vtkTable* inputData = vtkTable::New();
  if ( ! args->skipInt )
  {
    inputData->AddColumn( intArray );
  }
  if ( ! args->skipString )
  {
    inputData->AddColumn( strArray );
  }

  // Storage for global extrema
  int* min_g = new int[nVariables];
  int* max_g = new int[nVariables];

  // Reduce extrema for all variables
  com->AllReduce( min_l,
                  min_g,
                  nVariables,
                  vtkCommunicator::MIN_OP );

  com->AllReduce( max_l,
                  max_g,
                  nVariables,
                  vtkCommunicator::MAX_OP );

  if ( myRank == args->ioRank )
  {
    cout << "\n## Generated pseudo-random samples with following ranges:\n";
    for ( int i = 0; i < nVariables; ++ i )
    {
      cout << "   "
           << columnNames[i]
           << ": ";
      if ( isVariableAString[i] )
      {
        cout << static_cast<char>( min_g[i] )
             << " to "
             << static_cast<char>( max_g[i] );
      }
      else
      {
        cout <<  min_g[i]
             << " to "
             << max_g[i];
      }
      cout << "\n";
    } // i
  } // if ( myRank == args->ioRank )

  // Clean up
  delete [] v;
  delete [] min_l;
  delete [] max_l;
  intArray->Delete();
  strArray->Delete();


  // ************************** Order Statistics **************************

  // Synchronize and start clock
  com->Barrier();
  vtkTimerLog *timer=vtkTimerLog::New();
  timer->StartTimer();

  // Instantiate a parallel order statistics engine and set its ports
  vtkPOrderStatistics* pos = vtkPOrderStatistics::New();
  pos->SetInputData( vtkStatisticsAlgorithm::INPUT_DATA, inputData );
  vtkMultiBlockDataSet* outputModelDS = vtkMultiBlockDataSet::SafeDownCast( pos->GetOutputDataObject( vtkStatisticsAlgorithm::OUTPUT_MODEL ) );

  // Select columns of interest depending on command line choices
  if ( ! args->skipInt )
  {
    pos->AddColumn( columnNames[0] );
  }
  if ( ! args->skipString )
  {
    pos->AddColumn( columnNames[1] );
  }

  // Test (in parallel) with Learn, Derive, and Assess options turned on
  pos->SetLearnOption( true );
  pos->SetDeriveOption( true );
  pos->SetAssessOption( false );
  pos->SetTestOption( false );
  pos->SetQuantize( args->quantize );
  pos->SetMaximumHistogramSize( args->maxHistoSize );
  pos->Update();

  // Synchronize and stop clock
  com->Barrier();
  timer->StopTimer();

  if ( myRank == args->ioRank )
  {
    cout << "\n## Completed parallel calculation of order statistics (with assessment):\n"
         << "   Wall time: "
         << timer->GetElapsedTime()
         << " sec.\n";
  }

  // If no variables were requested, terminate here (only made sure that empty input worked)
  if ( ! nVariables )
  {
    pos->Delete();
    inputData->Delete();
    timer->Delete();

    return;
  }

  // Now perform verifications
  vtkTable* outputCard = vtkTable::SafeDownCast( outputModelDS->GetBlock( nVariables ) );

  // Verify that all processes have the same grand total and histograms size
  if ( myRank == args->ioRank )
  {
    cout << "\n## Verifying that all processes have the same grand total and histograms size.\n";
  }

  // Gather all cardinalities
  int numProcs = controller->GetNumberOfProcesses();
  int card_l = outputCard->GetValueByName( 0, "Cardinality" ).ToInt();
  int* card_g = new int[numProcs];
  com->AllGather( &card_l, card_g, 1 );

  // Known global cardinality
  int testIntValue = args->nVals * numProcs;

  // Verify histogram cardinalities for each variable
  for ( int i = 0; i < nVariables; ++ i )
  {
    if ( myRank == args->ioRank )
    {
      cout << "   "
           << columnNames[i]
           << ":\n";
    }  // if ( myRank == args->ioRank )

    vtkTable* outputHistogram = vtkTable::SafeDownCast( outputModelDS->GetBlock( i ) );
    // Print out and verify all cardinalities
    if ( myRank == args->ioRank )
    {
      for ( int p = 0; p < numProcs; ++ p )
      {
        cout << "     On process "
             << p
             << ", cardinality = "
             << card_g[p]
             << ", histogram size = "
             << outputHistogram->GetNumberOfRows()
             << "\n";

        if ( card_g[p] != testIntValue )
        {
          vtkGenericWarningMacro("Incorrect cardinality:"
                                 << card_g[p]
                                 << " <> "
                                 << testIntValue
                                 << ")");
          *(args->retVal) = 1;
        }
      } // p
    } // if ( myRank == args->ioRank )
  } // i

  // Print out and verify global extrema
  vtkTable* outputQuantiles = vtkTable::SafeDownCast( outputModelDS->GetBlock( nVariables + 1 ) );
  if ( myRank == args->ioRank )
  {
    cout << "\n## Verifying that calculated global ranges are correct:\n";
    for ( int i = 0; i < nVariables; ++ i )
    {
      vtkVariant min_c = outputQuantiles->GetValue( 0,
                                                    i + 1 );

      vtkVariant max_c = outputQuantiles->GetValue( outputQuantiles->GetNumberOfRows() - 1 ,
                                                    i + 1 );

      // Print out computed range
      cout << "   "
           << columnNames[i]
           << ": "
           << min_c
           << " to "
           << max_c
           << "\n";

      // Check minimum
      if ( min_c.IsString() )
      {
        char c = static_cast<char>( min_g[i] );
        if ( min_c.ToString() != vtkStdString( &c, 1 ) )
        {
          vtkGenericWarningMacro("Incorrect calculated minimum for variable "
                                 << columnNames[i]
                                 << ": "
                                 << min_c.ToString()
                                 << " <> "
                                 << vtkStdString( &c, 1 ) );
          *(args->retVal) = 1;
        }
      } // if ( min_c.IsString() )
      else
      {
        if ( min_c != min_g[i] )
        {
          vtkGenericWarningMacro("Incorrect calculated minimum for variable "
                                 << columnNames[i]
                                 << ": "
                                 << min_c
                                 << " <> "
                                 << min_g[i]);
          *(args->retVal) = 1;
        }
      } // else

      // Check maximum
      if ( max_c.IsString() )
      {
        char c = static_cast<char>( max_g[i] );
        if ( max_c.ToString() != vtkStdString( &c, 1 ) )
        {
          vtkGenericWarningMacro("Incorrect calculated maximum for variable "
                                 << columnNames[i]
                                 << ": "
                                 << max_c.ToString()
                                 << " <> "
                                 << vtkStdString( &c, 1 ) );
          *(args->retVal) = 1;
        }
      }
      else
      {
        if ( max_c != max_g[i] )
        {
          vtkGenericWarningMacro("Incorrect calculated maximum for variable "
                                 << columnNames[i]
                                 << ": "
                                 << max_c
                                 << " <> "
                                 << max_g[i]);
          *(args->retVal) = 1;
        } //  ( max_c.IsString() )
      } // else
    } // i
  } // if ( myRank == args->ioRank )

  // Clean up
  delete [] card_g;
  delete [] min_g;
  delete [] max_g;
  pos->Delete();
  inputData->Delete();
  timer->Delete();
}

}

//----------------------------------------------------------------------------
int TestRandomPOrderStatisticsMPI( int argc, char* argv[] )
{
  // **************************** MPI Initialization ***************************
  vtkMPIController* controller = vtkMPIController::New();
  controller->Initialize( &argc, &argv );

  // If an MPI controller was not created, terminate in error.
  if ( ! controller->IsA( "vtkMPIController" ) )
  {
    vtkGenericWarningMacro("Failed to initialize a MPI controller.");
    controller->Delete();
    return 1;
  }

  vtkMPICommunicator* com = vtkMPICommunicator::SafeDownCast( controller->GetCommunicator() );

  // ************************** Find an I/O node ********************************
  int* ioPtr;
  int ioRank;
  int flag;

  MPI_Comm_get_attr( MPI_COMM_WORLD,
                MPI_IO,
                &ioPtr,
                &flag );

  if ( ( ! flag ) || ( *ioPtr == MPI_PROC_NULL ) )
  {
    // Getting MPI attributes did not return any I/O node found.
    ioRank = MPI_PROC_NULL;
    vtkGenericWarningMacro("No MPI I/O nodes found.");

    // As no I/O node was found, we need an unambiguous way to report the problem.
    // This is the only case when a testValue of -1 will be returned
    controller->Finalize();
    controller->Delete();

    return -1;
  }
  else
  {
    if ( *ioPtr == MPI_ANY_SOURCE )
    {
      // Anyone can do the I/O trick--just pick node 0.
      ioRank = 0;
    }
    else
    {
      // Only some nodes can do I/O. Make sure everyone agrees on the choice (min).
      com->AllReduce( ioPtr,
                      &ioRank,
                      1,
                      vtkCommunicator::MIN_OP );
    }
  }

  // **************************** Parse command line ***************************
  // Set default argument values
  int nVals = 100000;
  bool skipInt = false;
  bool skipString = false;
  double stdev = 50.;
  bool quantize = false;
  int maxHistoSize = 500;

  // Initialize command line argument parser
  vtksys::CommandLineArguments clArgs;
  clArgs.Initialize( argc, argv );
  clArgs.StoreUnusedArguments( false );

  // Parse per-process cardinality of each pseudo-random sample
  clArgs.AddArgument("--n-per-proc",
                     vtksys::CommandLineArguments::SPACE_ARGUMENT,
                     &nVals, "Per-process cardinality of each pseudo-random sample");

  // Parse whether integer variable should be skipped
  clArgs.AddArgument("--skip-int",
                     vtksys::CommandLineArguments::NO_ARGUMENT,
                     &skipInt, "Skip integer variable");

  // Parse whether string variable should be skipped
  clArgs.AddArgument("--skip-string",
                     vtksys::CommandLineArguments::NO_ARGUMENT,
                     &skipString, "Skip string variable");

  // Parse standard deviation of pseudo-random Gaussian sample
  clArgs.AddArgument("--std-dev",
                     vtksys::CommandLineArguments::SPACE_ARGUMENT,
                     &stdev, "Standard deviation of pseudo-random Gaussian sample");

  // Parse maximum histogram size
  clArgs.AddArgument("--max-histo-size",
                     vtksys::CommandLineArguments::SPACE_ARGUMENT,
                     &maxHistoSize, "Maximum histogram size (when re-quantizing is allowed)");

  // Parse whether quantization should be used (to reduce histogram size)
  clArgs.AddArgument("--quantize",
                     vtksys::CommandLineArguments::NO_ARGUMENT,
                     &quantize, "Allow re-quantizing");


  // If incorrect arguments were provided, provide some help and terminate in error.
  if ( ! clArgs.Parse() )
  {
    if ( com->GetLocalProcessId() == ioRank )
    {
      cerr << "Usage: "
           << clArgs.GetHelp()
           << "\n";
    }

    controller->Finalize();
    controller->Delete();

    return 1;
  }

  // ************************** Initialize test *********************************
  if ( com->GetLocalProcessId() == ioRank )
  {
    cout << "\n# Process "
         << ioRank
         << " will be the I/O node.\n";
  }


  // Parameters for regression test.
  int testValue = 0;
  RandomOrderStatisticsArgs args;
  args.nVals = nVals;
  args.stdev = stdev;
  args.skipInt = skipInt;
  args.skipString = skipString;
  args.quantize = quantize;
  args.maxHistoSize = maxHistoSize;
  args.retVal = &testValue;
  args.ioRank = ioRank;

  // Check how many processes have been made available
  int numProcs = controller->GetNumberOfProcesses();
  if ( controller->GetLocalProcessId() == ioRank )
  {
    cout << "\n# Running test with "
         << numProcs
         << " processes and standard deviation = "
         << args.stdev
         << " for rounded Gaussian variable.\n";
  }

  // Execute the function named "process" on both processes
  controller->SetSingleMethod( RandomOrderStatistics, &args );
  controller->SingleMethodExecute();

  // Clean up and exit
  if ( com->GetLocalProcessId() == ioRank )
  {
    cout << "\n# Test completed.\n\n";
  }

  controller->Finalize();
  controller->Delete();

  return testValue;
}