1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
|
/*=========================================================================
Program: Visualization Toolkit
Module: vtkPDescriptiveStatistics.cxx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
/*-------------------------------------------------------------------------
Copyright 2011 Sandia Corporation.
Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
the U.S. Government retains certain rights in this software.
-------------------------------------------------------------------------*/
#include "vtkToolkits.h"
#include "vtkPDescriptiveStatistics.h"
#include "vtkCommunicator.h"
#include "vtkInformation.h"
#include "vtkInformationVector.h"
#include "vtkObjectFactory.h"
#include "vtkMultiBlockDataSet.h"
#include "vtkMultiProcessController.h"
#include "vtkTable.h"
#include "vtkVariant.h"
vtkStandardNewMacro(vtkPDescriptiveStatistics);
vtkCxxSetObjectMacro(vtkPDescriptiveStatistics, Controller, vtkMultiProcessController);
//-----------------------------------------------------------------------------
vtkPDescriptiveStatistics::vtkPDescriptiveStatistics()
{
this->Controller = 0;
this->SetController( vtkMultiProcessController::GetGlobalController() );
}
//-----------------------------------------------------------------------------
vtkPDescriptiveStatistics::~vtkPDescriptiveStatistics()
{
this->SetController( 0 );
}
//-----------------------------------------------------------------------------
void vtkPDescriptiveStatistics::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os, indent);
os << indent << "Controller: " << this->Controller << endl;
}
// ----------------------------------------------------------------------
void vtkPDescriptiveStatistics::Learn( vtkTable* inData,
vtkTable* inParameters,
vtkMultiBlockDataSet* outMeta )
{
if ( ! outMeta )
{
return;
}
// First calculate descriptive statistics on local data set
this->Superclass::Learn( inData, inParameters, outMeta );
vtkTable* primaryTab = vtkTable::SafeDownCast( outMeta->GetBlock( 0 ) );
if ( ! primaryTab )
{
return;
}
vtkIdType nRow = primaryTab->GetNumberOfRows();
if ( ! nRow )
{
// No statistics were calculated.
return;
}
// Make sure that parallel updates are needed, otherwise leave it at that.
int np = this->Controller->GetNumberOfProcesses();
if ( np < 2 )
{
return;
}
// Now get ready for parallel calculations
vtkCommunicator* com = this->Controller->GetCommunicator();
if ( ! com )
{
vtkErrorMacro("No parallel communicator.");
}
// (All) gather all sample sizes
int n_l = primaryTab->GetValueByName( 0, "Cardinality" ).ToInt(); // Cardinality
int* n_g = new int[np];
com->AllGather( &n_l, n_g, 1 );
// Iterate over all parameter rows
for ( int r = 0; r < nRow; ++ r )
{
// Reduce to global extrema
double extrema_l[2];
extrema_l[0] = primaryTab->GetValueByName( r, "Minimum" ).ToDouble();
// Collect - max instead of max so a single reduce op. (minimum) can process both extrema at a time
extrema_l[1] = - primaryTab->GetValueByName( r, "Maximum" ).ToDouble();
double extrema_g[2];
com->AllReduce( extrema_l,
extrema_g,
2,
vtkCommunicator::MIN_OP );
primaryTab->SetValueByName( r, "Minimum", extrema_g[0] );
// max = - min ( - max )
primaryTab->SetValueByName( r, "Maximum", - extrema_g[1] );
// (All) gather all local M statistics
double M_l[4];
M_l[0] = primaryTab->GetValueByName( r, "Mean" ).ToDouble();
M_l[1] = primaryTab->GetValueByName( r, "M2" ).ToDouble();
M_l[2] = primaryTab->GetValueByName( r, "M3" ).ToDouble();
M_l[3] = primaryTab->GetValueByName( r, "M4" ).ToDouble();
double* M_g = new double[4 * np];
com->AllGather( M_l, M_g, 4 );
// Aggregate all local quadruples of M statistics into global ones
int ns = n_g[0];
double mean = M_g[0];
double mom2 = M_g[1];
double mom3 = M_g[2];
double mom4 = M_g[3];
for ( int i = 1; i < np; ++ i )
{
int ns_l = n_g[i];
int N = ns + ns_l;
int o = 4 * i;
double mean_part = M_g[o];
double mom2_part = M_g[o + 1];
double mom3_part = M_g[o + 2];
double mom4_part = M_g[o + 3];
double delta = mean_part - mean;
double delta_sur_N = delta / static_cast<double>( N );
double delta2_sur_N2 = delta_sur_N * delta_sur_N;
int ns2 = ns * ns;
int ns_l2 = ns_l * ns_l;
int prod_ns = ns * ns_l;
mom4 += mom4_part
+ prod_ns * ( ns2 - prod_ns + ns_l2 ) * delta * delta_sur_N * delta2_sur_N2
+ 6. * ( ns2 * mom2_part + ns_l2 * mom2 ) * delta2_sur_N2
+ 4. * ( ns * mom3_part - ns_l * mom3 ) * delta_sur_N;
mom3 += mom3_part
+ prod_ns * ( ns - ns_l ) * delta * delta2_sur_N2
+ 3. * ( ns * mom2_part - ns_l * mom2 ) * delta_sur_N;
mom2 += mom2_part
+ prod_ns * delta * delta_sur_N;
mean += ns_l * delta_sur_N;
ns = N;
}
primaryTab->SetValueByName( r, "Mean", mean );
primaryTab->SetValueByName( r, "M2", mom2 );
primaryTab->SetValueByName( r, "M3", mom3 );
primaryTab->SetValueByName( r, "M4", mom4 );
// Set global statistics
primaryTab->SetValueByName( r, "Cardinality", ns );
// Clean-up
delete [] M_g;
}
delete [] n_g;
}
|