1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
|
#!/usr/bin/env python
import vtk
from vtk.test import Testing
from vtk.util.misc import vtkGetDataRoot
VTK_DATA_ROOT = vtkGetDataRoot()
# Parameters for debugging
NPts = 100000
math = vtk.vtkMath()
math.RandomSeed(31415)
# create pipeline
#
points = vtk.vtkBoundedPointSource()
points.SetNumberOfPoints(NPts)
points.SetBounds(-3,3, -1,1, -1,1)
points.ProduceRandomScalarsOff()
points.ProduceCellOutputOff()
# create some scalars based on implicit function
# Create a cylinder
cyl = vtk.vtkCylinder()
cyl.SetCenter(-2,0,0)
cyl.SetRadius(0.02)
# Create a (thin) box implicit function
box = vtk.vtkBox()
box.SetBounds(-1,0.5, -0.5,0.5, -0.0005, 0.0005)
# Create a sphere implicit function
sphere = vtk.vtkSphere()
sphere.SetCenter(2,0,0)
sphere.SetRadius(0.8)
# Boolean (union) these together
imp = vtk.vtkImplicitBoolean()
imp.SetOperationTypeToUnion()
imp.AddFunction(cyl)
imp.AddFunction(box)
imp.AddFunction(sphere)
# Generate scalars and vector
sample = vtk.vtkSampleImplicitFunctionFilter()
sample.SetInputConnection(points.GetOutputPort())
sample.SetImplicitFunction(imp)
sample.Update()
print(sample.GetOutput().GetScalarRange())
# Now see if we can extract the three objects as separate clusters.
extr = vtk.vtkEuclideanClusterExtraction()
extr.SetInputConnection(sample.GetOutputPort())
extr.SetRadius(0.15)
#extr.ColorClustersOn()
#extr.SetExtractionModeToAllClusters()
extr.SetExtractionModeToLargestCluster()
extr.ScalarConnectivityOn()
extr.SetScalarRange(-0.64,-.3)
# Time execution
timer = vtk.vtkTimerLog()
timer.StartTimer()
extr.Update()
timer.StopTimer()
time = timer.GetElapsedTime()
print("Points processed: {0}".format(points.GetOutput().GetNumberOfPoints()))
print(" Time to segment objects: {0}".format(time))
print(" Number of clusters: {0}".format(extr.GetNumberOfExtractedClusters()))
# Draw the points
subMapper = vtk.vtkPointGaussianMapper()
subMapper.SetInputConnection(extr.GetOutputPort(0))
#subMapper.SetInputConnection(sample.GetOutputPort(0))
subMapper.EmissiveOff()
subMapper.SetScaleFactor(0.0)
subMapper.SetScalarRange(-0.64,2.25)
subActor = vtk.vtkActor()
subActor.SetMapper(subMapper)
# Create an outline
outline = vtk.vtkOutlineFilter()
outline.SetInputConnection(sample.GetOutputPort())
outlineMapper = vtk.vtkPolyDataMapper()
outlineMapper.SetInputConnection(outline.GetOutputPort())
outlineActor = vtk.vtkActor()
outlineActor.SetMapper(outlineMapper)
# Create the RenderWindow, Renderer and both Actors
#
ren0 = vtk.vtkRenderer()
renWin = vtk.vtkRenderWindow()
renWin.AddRenderer(ren0)
iren = vtk.vtkRenderWindowInteractor()
iren.SetRenderWindow(renWin)
# Add the actors to the renderer, set the background and size
#
ren0.AddActor(subActor)
ren0.AddActor(outlineActor)
ren0.SetBackground(0.1, 0.2, 0.4)
renWin.SetSize(250,250)
cam = ren0.GetActiveCamera()
cam.SetFocalPoint(0,0,-1)
cam.SetPosition(0,0,0)
ren0.ResetCamera()
iren.Initialize()
# render the image
#
renWin.Render()
#iren.Start()
|