1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
|
#!/usr/bin/env python
import vtk
from vtk.test import Testing
from vtk.util.misc import vtkGetDataRoot
VTK_DATA_ROOT = vtkGetDataRoot()
# create pipeline
#
# Create a cylinder
cyl = vtk.vtkCylinderSource()
cyl.SetCenter(-2,0,0)
cyl.SetRadius(0.02)
cyl.SetHeight(1.8)
cyl.SetResolution(24)
# Create a (thin) box implicit function
plane = vtk.vtkPlaneSource()
plane.SetOrigin(-1, -0.5, 0)
plane.SetPoint1(0.5, -0.5, 0)
plane.SetPoint2(-1, 0.5, 0)
# Create a sphere implicit function
sphere = vtk.vtkSphereSource()
sphere.SetCenter(2,0,0)
sphere.SetRadius(0.8)
sphere.SetThetaResolution(96)
sphere.SetPhiResolution(48)
# Boolean (union) these together
append = vtk.vtkAppendPolyData()
append.AddInputConnection(cyl.GetOutputPort())
append.AddInputConnection(plane.GetOutputPort())
append.AddInputConnection(sphere.GetOutputPort())
# Extract points along sphere surface
pts = vtk.vtkPolyDataPointSampler()
pts.SetInputConnection(append.GetOutputPort())
pts.SetDistance(0.01)
pts.Update()
# Now generate normals from resulting points
curv = vtk.vtkPCACurvatureEstimation()
curv.SetInputConnection(pts.GetOutputPort())
curv.SetSampleSize(20)
# Time execution
timer = vtk.vtkTimerLog()
timer.StartTimer()
curv.Update()
timer.StopTimer()
time = timer.GetElapsedTime()
print("Points processed: {0}".format(pts.GetOutput().GetNumberOfPoints()))
print(" Time to generate curvature: {0}".format(time))
# Break out the curvature into three separate arrays
assign = vtk.vtkAssignAttribute()
assign.SetInputConnection(curv.GetOutputPort())
assign.Assign("PCACurvature", "VECTORS", "POINT_DATA")
extract = vtk.vtkExtractVectorComponents()
extract.SetInputConnection(assign.GetOutputPort())
extract.Update()
print(extract.GetOutput(0).GetScalarRange())
print(extract.GetOutput(1).GetScalarRange())
print(extract.GetOutput(2).GetScalarRange())
# Three different outputs for different curvatures
subMapper = vtk.vtkPointGaussianMapper()
subMapper.SetInputConnection(extract.GetOutputPort(0))
subMapper.EmissiveOff()
subMapper.SetScaleFactor(0.0)
subActor = vtk.vtkActor()
subActor.SetMapper(subMapper)
subActor.AddPosition(0,2.25,0)
sub1Mapper = vtk.vtkPointGaussianMapper()
sub1Mapper.SetInputConnection(extract.GetOutputPort(1))
sub1Mapper.EmissiveOff()
sub1Mapper.SetScaleFactor(0.0)
sub1Actor = vtk.vtkActor()
sub1Actor.SetMapper(sub1Mapper)
sub2Mapper = vtk.vtkPointGaussianMapper()
sub2Mapper.SetInputConnection(extract.GetOutputPort(2))
sub2Mapper.EmissiveOff()
sub2Mapper.SetScaleFactor(0.0)
sub2Actor = vtk.vtkActor()
sub2Actor.SetMapper(sub2Mapper)
sub2Actor.AddPosition(0,-2.25,0)
# Create the RenderWindow, Renderer and both Actors
#
ren0 = vtk.vtkRenderer()
renWin = vtk.vtkRenderWindow()
renWin.AddRenderer(ren0)
iren = vtk.vtkRenderWindowInteractor()
iren.SetRenderWindow(renWin)
# Add the actors to the renderer, set the background and size
#
ren0.AddActor(subActor)
ren0.AddActor(sub1Actor)
ren0.AddActor(sub2Actor)
ren0.SetBackground(0.1, 0.2, 0.4)
renWin.SetSize(250,250)
cam = ren0.GetActiveCamera()
cam.SetFocalPoint(0,0,-1)
cam.SetPosition(0,0,0)
ren0.ResetCamera()
iren.Initialize()
# render the image
#
renWin.Render()
#iren.Start()
|