1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
|
#!/usr/bin/env python
import vtk
from vtk.test import Testing
from vtk.util.misc import vtkGetDataRoot
VTK_DATA_ROOT = vtkGetDataRoot()
# Interpolate onto a volume
# Parameters for debugging
NPts = 1000000
math = vtk.vtkMath()
math.RandomSeed(31415)
# create pipeline
#
points = vtk.vtkBoundedPointSource()
points.SetNumberOfPoints(NPts)
points.SetBounds(-3,3, -1,1, -1,1)
points.ProduceRandomScalarsOn()
points.ProduceCellOutputOff()
points.Update()
# Create a cylinder
cyl = vtk.vtkCylinder()
cyl.SetCenter(-2,0,0)
cyl.SetRadius(0.02)
# Create a (thin) box implicit function
box = vtk.vtkBox()
box.SetBounds(-1,0.5, -0.5,0.5, -0.0005, 0.0005)
# Create a sphere implicit function
sphere = vtk.vtkSphere()
sphere.SetCenter(2,0,0)
sphere.SetRadius(0.8)
# Boolean (union) these together
imp = vtk.vtkImplicitBoolean()
imp.SetOperationTypeToUnion()
imp.AddFunction(cyl)
imp.AddFunction(box)
imp.AddFunction(sphere)
# Extract points along sphere surface
extract = vtk.vtkFitImplicitFunction()
extract.SetInputConnection(points.GetOutputPort())
extract.SetImplicitFunction(imp)
extract.SetThreshold(0.0005)
extract.Update()
# Now generate normals from resulting points
curv = vtk.vtkPCACurvatureEstimation()
curv.SetInputConnection(extract.GetOutputPort())
curv.SetSampleSize(6)
# Time execution
timer = vtk.vtkTimerLog()
timer.StartTimer()
curv.Update()
timer.StopTimer()
time = timer.GetElapsedTime()
print("Points processed: {0}".format(NPts))
print(" Time to generate curvature: {0}".format(time))
# Break out the curvature into thress separate arrays
assign = vtk.vtkAssignAttribute()
assign.SetInputConnection(curv.GetOutputPort())
assign.Assign("PCACurvature", "VECTORS", "POINT_DATA")
extract = vtk.vtkExtractVectorComponents()
extract.SetInputConnection(assign.GetOutputPort())
extract.Update()
print(extract.GetOutput(0).GetScalarRange())
print(extract.GetOutput(1).GetScalarRange())
print(extract.GetOutput(2).GetScalarRange())
# Three different outputs for different curvatures
subMapper = vtk.vtkPointGaussianMapper()
subMapper.SetInputConnection(extract.GetOutputPort(0))
subMapper.EmissiveOff()
subMapper.SetScaleFactor(0.0)
subActor = vtk.vtkActor()
subActor.SetMapper(subMapper)
subActor.AddPosition(0,2.25,0)
sub1Mapper = vtk.vtkPointGaussianMapper()
sub1Mapper.SetInputConnection(extract.GetOutputPort(1))
sub1Mapper.EmissiveOff()
sub1Mapper.SetScaleFactor(0.0)
sub1Actor = vtk.vtkActor()
sub1Actor.SetMapper(sub1Mapper)
sub2Mapper = vtk.vtkPointGaussianMapper()
sub2Mapper.SetInputConnection(extract.GetOutputPort(2))
sub2Mapper.EmissiveOff()
sub2Mapper.SetScaleFactor(0.0)
sub2Actor = vtk.vtkActor()
sub2Actor.SetMapper(sub2Mapper)
sub2Actor.AddPosition(0,-2.25,0)
# Create the RenderWindow, Renderer and both Actors
#
ren0 = vtk.vtkRenderer()
renWin = vtk.vtkRenderWindow()
renWin.AddRenderer(ren0)
iren = vtk.vtkRenderWindowInteractor()
iren.SetRenderWindow(renWin)
# Add the actors to the renderer, set the background and size
#
ren0.AddActor(subActor)
ren0.AddActor(sub1Actor)
ren0.AddActor(sub2Actor)
ren0.SetBackground(0.1, 0.2, 0.4)
renWin.SetSize(250,250)
cam = ren0.GetActiveCamera()
cam.SetFocalPoint(0,0,-1)
cam.SetPosition(0,0,0)
ren0.ResetCamera()
iren.Initialize()
# render the image
#
renWin.Render()
#iren.Start()
|