File: vtkPointDensityFilter.h

package info (click to toggle)
vtk7 7.1.1%2Bdfsg1-12
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 125,776 kB
  • sloc: cpp: 1,539,582; ansic: 106,521; python: 78,038; tcl: 47,013; xml: 8,142; yacc: 5,040; java: 4,439; perl: 3,132; lex: 1,926; sh: 1,500; makefile: 122; objc: 83
file content (238 lines) | stat: -rw-r--r-- 9,304 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkPointDensityFilter.h

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
/**
 * @class   vtkPointDensityFilter
 * @brief   produce density field from input point cloud
 *
 * vtkPointDensityFilter is a filter that generates a density field on a
 * volume from a point cloud. Basically the density is computed as number of
 * points in a local neighborhood per unit volume; or optionally, the number
 * of points in a local neighborhood surrounding each voxel. The local
 * neighborhood is specified as a radius around each sample position (i.e.,
 * each voxel) which can be of fixed value; or the radius can be relative to
 * the voxel size. The density computation may be further weighted by a
 * scalar value which is simply multiplied by each point's presumed density
 * of 1.0.
 *
 * To use this filter, specify an input of type vtkPointSet (i.e., has an
 * explicit representation of points). Optionally a scalar weighting function
 * can be provided (part of the input to the filter). Then specify how the
 * local spherical neigborhood is to be defined, either by a fixed radius or
 * a radius relative to the voxel size. Finally, specify how the density is
 * specified, either as a points/volume, or as number of points. (The
 * weighting scalar array will affect both of these results if provided and
 * enabled.)
 *
 * @warning
 * A point locator is used to speed up searches. By default a fast
 * vtkStaticPointLocator is used; however the user may specify an alternative
 * locator. In some situations adaptive locators may run faster depending on
 * the relative variation in point cloud density.
 *
 * @warning
 * Note that the volume calculation can be affected by the boundary. The
 * local spherical neighborhood around a "near volume boundary" voxel may
 * extend beyond the volume extent, meaning that density computation may be
 * reduced. To counter this effect, the volume may be increased in size
 * and/or resolution so that the point cloud fits well within the volume.
 *
 * @warning
 * While this class is very similar to many other of VTK's the point
 * splatting and interpolation classes, the algorithm density computation is
 * specialized to generate the density computation over a volume, does not
 * require (scalar weighting) data attributes to run, and does not require
 * multiple inputs. As an interesting side note: using the
 * vtkPointInterpolation class with a vtkLinearKernel, a (scalar) weighting
 * point attribute, a point cloud source, and an input volume produces the
 * same result as this filter does (assuming that the input volume is the
 * same).
 *
 * @warning
 * This class has been threaded with vtkSMPTools. Using TBB or other
 * non-sequential type (set in the CMake variable
 * VTK_SMP_IMPLEMENTATION_TYPE) may improve performance significantly.
 *
 * @sa
 * vtkCheckerboardSplatter vtkShepardMethod vtkGaussianSplatter
 * vtkPointInterpolator vtkSPHInterpolator
*/

#ifndef vtkPointDensityFilter_h
#define vtkPointDensityFilter_h

#include "vtkFiltersPointsModule.h" // For export macro
#include "vtkImageAlgorithm.h"

#define VTK_DENSITY_ESTIMATE_FIXED_RADIUS 0
#define VTK_DENSITY_ESTIMATE_RELATIVE_RADIUS 1

#define VTK_DENSITY_FORM_VOLUME_NORM 0
#define VTK_DENSITY_FORM_NPTS 1

class vtkAbstractPointLocator;

class VTKFILTERSPOINTS_EXPORT vtkPointDensityFilter : public vtkImageAlgorithm
{
public:
  //@{
  /**
   * Standard methods for instantiating, obtaining type information, and
   * printing information.
   */
  static vtkPointDensityFilter *New();
  vtkTypeMacro(vtkPointDensityFilter,vtkImageAlgorithm);
  void PrintSelf(ostream& os, vtkIndent indent);
  //@}

  //@{
  /**
   * Set / get the dimensions of the sampling volume. Higher values generally
   * produce better results but may be much slower. Note however that too
   * high a resolution can generate excessive noise; too low and data can be
   * excessively smoothed.
   */
  void SetSampleDimensions(int i, int j, int k);
  void SetSampleDimensions(int dim[3]);
  vtkGetVectorMacro(SampleDimensions,int,3);
  //@}

  //@{
  /**
   * Set / get the (xmin,xmax, ymin,ymax, zmin,zmax) bounding box in which
   * the sampling is performed. If any of the (min,max) bounds values are
   * min >= max, then the bounds will be computed automatically from the input
   * data. Otherwise, the user-specified bounds will be used.
   */
  vtkSetVector6Macro(ModelBounds,double);
  vtkGetVectorMacro(ModelBounds,double,6);
  //@}

  //@{
  /**
   * Set / get the relative amount to pad the model bounds if automatic
   * computation is performed. The padding is the fraction to scale
   * the model bounds in each of the x-y-z directions. By default the
   * padding is 0.10 (i.e., 10% larger in each direction).
   */
  vtkSetClampMacro(AdjustDistance,double,-1.0,1.0);
  vtkGetMacro(AdjustDistance,double);
  //@}

  //@{
  /**
   * Specify the method to estimate point density. The density can be
   * calculated using a fixed sphere radius; or a sphere radius that is
   * relative to voxel size.
   */
  vtkSetClampMacro(DensityEstimate,int, VTK_DENSITY_ESTIMATE_FIXED_RADIUS,
                   VTK_DENSITY_ESTIMATE_RELATIVE_RADIUS);
  vtkGetMacro(DensityEstimate,int);
  void SetDensityEstimateToFixedRadius()
    {this->SetDensityEstimate(VTK_DENSITY_ESTIMATE_FIXED_RADIUS);}
  void SetDensityEstimateToRelativeRadius()
    {this->SetDensityEstimate(VTK_DENSITY_ESTIMATE_RELATIVE_RADIUS);}
  const char *GetDensityEstimateAsString();
  //@}

  //@{
  /**
   * Specify the form by which the density is expressed. Either the density is
   * expressed as (number of points/local sphere volume), or as simply the
   * (number of points) within the local sphere.
   */
  vtkSetClampMacro(DensityForm,int, VTK_DENSITY_FORM_VOLUME_NORM,
                   VTK_DENSITY_FORM_NPTS);
  vtkGetMacro(DensityForm,int);
  void SetDensityFormToVolumeNormalized()
    {this->SetDensityForm(VTK_DENSITY_FORM_VOLUME_NORM);}
  void SetDensityFormToNumberOfPoints()
    {this->SetDensityForm(VTK_DENSITY_FORM_NPTS);}
  const char *GetDensityFormAsString();
  //@}

  //@{
  /**
   * Set / get the radius variable defining the local sphere used to estimate
   * the density function. The Radius is used when the density estimate is
   ^ set to a fixed radius (i.e., the radius doesn't change).
   */
  vtkSetClampMacro(Radius,double,0.0,VTK_DOUBLE_MAX);
  vtkGetMacro(Radius,double);
  //@}

  //@{
  /**
   * Set / get the relative radius factor defining the local sphere used to
   * estimate the density function. The relative sphere radius is equal to
   * the diagonal length of a voxel times the radius factor. The RelativeRadius
   * is used when the density estimate is set to relative radius (i.e.,
   * relative to voxel size).
   */
  vtkSetClampMacro(RelativeRadius,double,0.0,VTK_DOUBLE_MAX);
  vtkGetMacro(RelativeRadius,double);
  //@}

  //@{
  /**
   * Turn on/off the weighting of point density by a scalar array. By default
   * scalar weighting is off.
   */
  vtkSetMacro(ScalarWeighting,bool);
  vtkGetMacro(ScalarWeighting,bool);
  vtkBooleanMacro(ScalarWeighting,bool);
  //@}

  //@{
  /**
   * Specify a point locator. By default a vtkStaticPointLocator is
   * used. The locator performs efficient searches to locate near a
   * specified interpolation position.
   */
  void SetLocator(vtkAbstractPointLocator *locator);
  vtkGetObjectMacro(Locator,vtkAbstractPointLocator);
  //@}

protected:
  vtkPointDensityFilter();
  ~vtkPointDensityFilter();

  int SampleDimensions[3]; // dimensions of volume over which to estimate density
  double ModelBounds[6]; // bounding box of splatting dimensions
  double AdjustDistance; // how much to pad the model bounds if automatically computed
  double Origin[3], Spacing[3]; // output geometry
  int DensityEstimate; // how to compute the density
  int DensityForm; // how to represent density value
  double RelativeRadius; // Radius factor for estimating density
  double Radius; // Actually radius used
  bool ScalarWeighting; // Are point densities weighted or not?
  vtkAbstractPointLocator *Locator; //accelerate point searches

  virtual int FillInputPortInformation(int port, vtkInformation* info);
  virtual int RequestInformation (vtkInformation *,
                                  vtkInformationVector **,
                                  vtkInformationVector *);
  virtual int RequestData(vtkInformation *,
                          vtkInformationVector **,
                          vtkInformationVector *);

  void ComputeModelBounds(vtkDataSet *input, vtkImageData *output,
                          vtkInformation *outInfo);

private:
  vtkPointDensityFilter(const vtkPointDensityFilter&) VTK_DELETE_FUNCTION;
  void operator=(const vtkPointDensityFilter&) VTK_DELETE_FUNCTION;
};

#endif