1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
|
/*=========================================================================
Program: Visualization Toolkit
Module: vtkStatisticalOutlierRemoval.cxx
Copyright (c) Kitware, Inc.
All rights reserved.
See LICENSE file for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkStatisticalOutlierRemoval.h"
#include "vtkObjectFactory.h"
#include "vtkAbstractPointLocator.h"
#include "vtkStaticPointLocator.h"
#include "vtkPointSet.h"
#include "vtkPoints.h"
#include "vtkIdList.h"
#include "vtkSMPTools.h"
#include "vtkSMPThreadLocalObject.h"
#include "vtkMath.h"
vtkStandardNewMacro(vtkStatisticalOutlierRemoval);
vtkCxxSetObjectMacro(vtkStatisticalOutlierRemoval,Locator,vtkAbstractPointLocator);
//----------------------------------------------------------------------------
// Helper classes to support efficient computing, and threaded execution.
namespace {
//----------------------------------------------------------------------------
// The threaded core of the algorithm (first pass)
template <typename T>
struct ComputeMeanDistance
{
const T *Points;
vtkAbstractPointLocator *Locator;
int SampleSize;
float *Distance;
double Mean;
// Don't want to allocate working arrays on every thread invocation. Thread local
// storage lots of new/delete.
vtkSMPThreadLocalObject<vtkIdList> PIds;
vtkSMPThreadLocal<double> ThreadMean;
vtkSMPThreadLocal<vtkIdType> ThreadCount;
ComputeMeanDistance(T *points, vtkAbstractPointLocator *loc, int size, float *d) :
Points(points), Locator(loc), SampleSize(size), Distance(d), Mean(0.0)
{
}
// Just allocate a little bit of memory to get started.
void Initialize()
{
vtkIdList*& pIds = this->PIds.Local();
pIds->Allocate(128); //allocate some memory
double &threadMean = this->ThreadMean.Local();
threadMean = 0.0;
vtkIdType &threadCount = this->ThreadCount.Local();
threadCount = 0;
}
// Compute average distance for each point, plus accumlate summation of
// mean distances and count (for averaging in the Reduce() method).
void operator() (vtkIdType ptId, vtkIdType endPtId)
{
const T *px = this->Points + 3*ptId;
const T *py;
double x[3], y[3];
vtkIdList*& pIds = this->PIds.Local();
double &threadMean = this->ThreadMean.Local();
vtkIdType &threadCount = this->ThreadCount.Local();
for ( ; ptId < endPtId; ++ptId)
{
x[0] = static_cast<double>(*px++);
x[1] = static_cast<double>(*px++);
x[2] = static_cast<double>(*px++);
// The method FindClosestNPoints will include the current point, so
// we increase the sample size by one.
this->Locator->FindClosestNPoints(this->SampleSize+1, x, pIds);
vtkIdType numPts = pIds->GetNumberOfIds();
double sum = 0.0;
vtkIdType nei;
for (int sample=0; sample < numPts; ++sample)
{
nei = pIds->GetId(sample);
if ( nei != ptId ) //exclude ourselves
{
py = this->Points + 3*nei;
y[0] = static_cast<double>(*py++);
y[1] = static_cast<double>(*py++);
y[2] = static_cast<double>(*py);
sum += sqrt( vtkMath::Distance2BetweenPoints(x,y) );
}
}//sum the lengths of all samples exclusing current point
// Average the lengths; again exclude ourselves
if ( numPts > 0 )
{
this->Distance[ptId] = sum / static_cast<double>(numPts-1);
threadMean += this->Distance[ptId];
threadCount++;
}
else //ignore if no points are found, something bad has happened
{
this->Distance[ptId] = VTK_FLOAT_MAX; //the effect is to eliminate it
}
}
}
// Compute the mean by compositing all threads
void Reduce()
{
double mean=0.0;
vtkIdType count=0;
vtkSMPThreadLocal<double>::iterator mItr;
vtkSMPThreadLocal<double>::iterator mEnd = this->ThreadMean.end();
for ( mItr=this->ThreadMean.begin(); mItr != mEnd; ++mItr )
{
mean += *mItr;
}
vtkSMPThreadLocal<vtkIdType>::iterator cItr;
vtkSMPThreadLocal<vtkIdType>::iterator cEnd = this->ThreadCount.end();
for ( cItr=this->ThreadCount.begin(); cItr != cEnd; ++cItr )
{
count += *cItr;
}
count = ( count < 1 ? 1 : count);
this->Mean = mean / static_cast<double>(count);
}
static void Execute(vtkStatisticalOutlierRemoval *self, vtkIdType numPts,
T *points, float *distances, double& mean)
{
ComputeMeanDistance compute(points, self->GetLocator(),
self->GetSampleSize(), distances);
vtkSMPTools::For(0, numPts, compute);
mean = compute.Mean;
}
}; //ComputeMeanDistance
//----------------------------------------------------------------------------
// Now that the mean is known, compute the standard deviation
struct ComputeStdDev
{
float *Distances;
double Mean;
double StdDev;
vtkSMPThreadLocal<double> ThreadSigma;
vtkSMPThreadLocal<vtkIdType> ThreadCount;
ComputeStdDev(float *d, double mean) : Distances(d), Mean(mean), StdDev(0.0)
{
}
void Initialize()
{
double &threadSigma = this->ThreadSigma.Local();
threadSigma = 0.0;
vtkIdType &threadCount = this->ThreadCount.Local();
threadCount = 0;
}
void operator() (vtkIdType ptId, vtkIdType endPtId)
{
double &threadSigma = this->ThreadSigma.Local();
vtkIdType &threadCount = this->ThreadCount.Local();
float d;
for ( ; ptId < endPtId; ++ptId)
{
d = this->Distances[ptId];
if ( d < VTK_FLOAT_MAX )
{
threadSigma += (this->Mean - d) * (this->Mean - d);
threadCount++;
}
else
{
continue; //skip bad point
}
}
}
void Reduce()
{
double sigma=0.0;
vtkIdType count=0;
vtkSMPThreadLocal<double>::iterator sItr;
vtkSMPThreadLocal<double>::iterator sEnd = this->ThreadSigma.end();
for ( sItr=this->ThreadSigma.begin(); sItr != sEnd; ++sItr )
{
sigma += *sItr;
}
vtkSMPThreadLocal<vtkIdType>::iterator cItr;
vtkSMPThreadLocal<vtkIdType>::iterator cEnd = this->ThreadCount.end();
for ( cItr=this->ThreadCount.begin(); cItr != cEnd; ++cItr )
{
count += *cItr;
}
this->StdDev = sqrt( sigma / static_cast<double>(count) );
}
static void Execute(vtkIdType numPts, float *distances,
double mean, double& sigma)
{
ComputeStdDev stdDev(distances, mean);
vtkSMPTools::For(0, numPts, stdDev);
sigma = stdDev.StdDev;
}
}; //ComputeStdDev
//----------------------------------------------------------------------------
// Statistics are computed, now filter the points
struct RemoveOutliers
{
double Mean;
double Sigma;
float *Distances;
vtkIdType *PointMap;
RemoveOutliers(double mean, double sigma, float *distances, vtkIdType *map) :
Mean(mean), Sigma(sigma), Distances(distances), PointMap(map)
{
}
void operator() (vtkIdType ptId, vtkIdType endPtId)
{
vtkIdType *map = this->PointMap + ptId;
float *d = this->Distances + ptId;
double mean=this->Mean, sigma=this->Sigma;
for ( ; ptId < endPtId; ++ptId)
{
*map++ = ( fabs(*d++ - mean) <= sigma ? 1 : -1 );
}
}
static void Execute(vtkIdType numPts, float *distances, double mean,
double sigma, vtkIdType *map)
{
RemoveOutliers remove(mean, sigma, distances, map);
vtkSMPTools::For(0, numPts, remove);
}
}; //RemoveOutliers
} //anonymous namespace
//================= Begin class proper =======================================
//----------------------------------------------------------------------------
vtkStatisticalOutlierRemoval::vtkStatisticalOutlierRemoval()
{
this->SampleSize = 25;
this->StandardDeviationFactor = 1.0;
this->Locator = vtkStaticPointLocator::New();
this->ComputedMean = 0.0;
this->ComputedStandardDeviation = 0.0;
}
//----------------------------------------------------------------------------
vtkStatisticalOutlierRemoval::~vtkStatisticalOutlierRemoval()
{
this->SetLocator(NULL);
}
//----------------------------------------------------------------------------
// Traverse all the input points and gather statistics about average distance
// between them, and the standard deviation of variation. Then filter points
// within a specified deviation from the mean.
int vtkStatisticalOutlierRemoval::FilterPoints(vtkPointSet *input)
{
// Perform the point removal
// Start by building the locator
if ( !this->Locator )
{
vtkErrorMacro(<<"Point locator required\n");
return 0;
}
this->Locator->SetDataSet(input);
this->Locator->BuildLocator();
// Compute statistics across the point cloud. Start my computing
// mean distance to N closest neighbors.
vtkIdType numPts = input->GetNumberOfPoints();
float *dist = new float [numPts];
void *inPtr = input->GetPoints()->GetVoidPointer(0);
double mean=0.0, sigma=0.0;
switch (input->GetPoints()->GetDataType())
{
vtkTemplateMacro(ComputeMeanDistance<VTK_TT>::
Execute(this, numPts, (VTK_TT *)inPtr, dist, mean));
}
// At this point the mean distance for each point, and across the point
// cloud is known. Now compute global standard deviation.
ComputeStdDev::Execute(numPts, dist, mean, sigma);
// Finally filter the points based on specified deviation range.
RemoveOutliers::Execute(numPts, dist, mean,
this->StandardDeviationFactor*sigma, this->PointMap);
// Assign derived variable
this->ComputedMean = mean;
this->ComputedStandardDeviation = sigma;
// Clean up
delete [] dist;
return 1;
}
//----------------------------------------------------------------------------
void vtkStatisticalOutlierRemoval::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os,indent);
os << indent << "Sample Size: " << this->SampleSize << "\n";
os << indent << "Standard Deviation Factor: "
<< this->StandardDeviationFactor << "\n";
os << indent << "Locator: " << this->Locator << "\n";
os << indent << "Computed Mean: " << this->ComputedMean << "\n";
os << indent << "Computed Standard Deviation: "
<< this->ComputedStandardDeviation << "\n";
}
|