1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
|
/*=========================================================================
Program: Visualization Toolkit
Module: vtkReebGraphVolumeSkeletonFilter.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
/**
* @class vtkReebGraphVolumeSkeletonFilter
* @brief compute a skeletal embedding of the
* Reeb graph of a scalar field defined on a tetrahedral mesh
* (vtkUnstructuredGrid).
*
* The filter takes a vtkUnstructuredGrid as an input (port 0), along with a
* vtkReebGraph (port 1).
* The filter samples each arc of the Reeb graph and embeds the samples on the
* barycenter of the corresponding field contour.
* The number of (evenly distributed) arc samples can be defined with
* SetNumberOfSamples() (default value: 10).
* The skeleton can be optionally smoothed with SetNumberOfSmoothingIterations()
* (default value: 10).
* The filter will first try to pull as a scalar field the vtkDataArray with Id
* 'FieldId' of the vtkPolyData, see SetFieldId() (default: 0). The filter will
* abort if this field does not exist.
*
* The filter outputs a vtkTable of points (double[3]). Each column contains the
* samples (sorted by function value) of the corresponding arc. The first and
* the last entry of the column corresponds to the critical nodes at the
* extremity of the arc (each column has NumberOfSamples + 2 entries).
*
* The skeleton can be rendered by linking the samples with geometrical
* primitives (for instance, spheres at critical nodes and cylinders between
* intermediary samples, see Graphics/Testing/Cxx/TestReebGraph.cxx).
*
*/
#ifndef vtkReebGraphVolumeSkeletonFilter_h
#define vtkReebGraphVolumeSkeletonFilter_h
#include "vtkFiltersReebGraphModule.h" // For export macro
#include "vtkDataObjectAlgorithm.h"
class vtkReebGraph;
class vtkTable;
class VTKFILTERSREEBGRAPH_EXPORT vtkReebGraphVolumeSkeletonFilter :
public vtkDataObjectAlgorithm
{
public:
static vtkReebGraphVolumeSkeletonFilter* New();
vtkTypeMacro(vtkReebGraphVolumeSkeletonFilter,
vtkDataObjectAlgorithm);
void PrintSelf(ostream& os, vtkIndent indent);
//@{
/**
* Set the number of samples along each arc of the Reeb graph
* Default value: 5
*/
vtkSetMacro(NumberOfSamples, int);
vtkGetMacro(NumberOfSamples, int);
//@}
//@{
/**
* Set the number of optional smoothing iterations
* Default value: 30
*/
vtkSetMacro(NumberOfSmoothingIterations, int);
vtkGetMacro(NumberOfSmoothingIterations, int);
//@}
//@{
/**
* Set the scalar field Id
* Default value: 0
*/
vtkSetMacro(FieldId, vtkIdType);
vtkGetMacro(FieldId, vtkIdType);
//@}
vtkTable* GetOutput();
protected:
vtkReebGraphVolumeSkeletonFilter();
~vtkReebGraphVolumeSkeletonFilter();
vtkIdType FieldId;
int NumberOfSamples, NumberOfSmoothingIterations;
int FillInputPortInformation(int portNumber, vtkInformation *);
int FillOutputPortInformation(int portNumber, vtkInformation *info);
int RequestData(vtkInformation *request,
vtkInformationVector **inputVector, vtkInformationVector *outputVector);
private:
vtkReebGraphVolumeSkeletonFilter(const vtkReebGraphVolumeSkeletonFilter&) VTK_DELETE_FUNCTION;
void operator=(const vtkReebGraphVolumeSkeletonFilter&) VTK_DELETE_FUNCTION;
};
#endif
|