File: vtkEllipseArcSource.cxx

package info (click to toggle)
vtk7 7.1.1%2Bdfsg1-12
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 125,776 kB
  • sloc: cpp: 1,539,582; ansic: 106,521; python: 78,038; tcl: 47,013; xml: 8,142; yacc: 5,040; java: 4,439; perl: 3,132; lex: 1,926; sh: 1,500; makefile: 122; objc: 83
file content (212 lines) | stat: -rw-r--r-- 6,557 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkEllipseArcSource.cxx

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
#include "vtkEllipseArcSource.h"

#include "vtkCellArray.h"
#include "vtkFloatArray.h"
#include "vtkInformation.h"
#include "vtkInformationVector.h"
#include "vtkMath.h"
#include "vtkMathUtilities.h"
#include "vtkNew.h"
#include "vtkObjectFactory.h"
#include "vtkPoints.h"
#include "vtkPointData.h"
#include "vtkPolyData.h"
#include "vtkStreamingDemandDrivenPipeline.h"

vtkStandardNewMacro(vtkEllipseArcSource);

// --------------------------------------------------------------------------
vtkEllipseArcSource::vtkEllipseArcSource()
{
  // Default center is origin
  this->Center[0] = 0.0;
  this->Center[1] = 0.0;
  this->Center[2] = 0.0;

  // Default normal vector is unit in Oz direction
  this->Normal[0] = 0.0;
  this->Normal[1] = 0.0;
  this->Normal[2] = 1.0;

  this->MajorRadiusVector[0] = 1.0;
  this->MajorRadiusVector[1] = 0.0;
  this->MajorRadiusVector[2] = 0.0;

  // Default arc is a quarter-circle
  this->StartAngle = 0.0;
  this->SegmentAngle = 90.;

  // Default resolution
  this->Resolution = 100;

  this->OutputPointsPrecision = SINGLE_PRECISION;

  // Default Ratio
  this->Ratio = 1.0;

  // This is a source
  this->SetNumberOfInputPorts(0);
}

// --------------------------------------------------------------------------
int vtkEllipseArcSource::RequestData(vtkInformation* vtkNotUsed(request),
  vtkInformationVector** vtkNotUsed(inputVector),
  vtkInformationVector* outputVector)
{
  int numLines = this->Resolution;
  int numPts = this->Resolution + 1;
  double tc[3] = { 0.0, 0.0, 0.0 };

  // get the info object
  vtkInformation* outInfo = outputVector->GetInformationObject(0);

  // get the ouptut
  vtkPolyData* output =
    vtkPolyData::SafeDownCast(outInfo->Get(vtkDataObject::DATA_OBJECT()));

  double a = 1.0, b = 1.0;
  double majorRadiusVect[3];
  double orthogonalVect[3];
  double startAngleRad = 0.0, segmentAngleRad, angleIncRad;

  // make sure the normal vector is normalized
  vtkMath::Normalize(this->Normal);

  // get orthonal vector between user-defined major radius and this->Normal
  vtkMath::Cross(this->Normal, this->MajorRadiusVector, orthogonalVect);
  if (vtkMathUtilities::FuzzyCompare(vtkMath::Norm(orthogonalVect), 0.0))
  {
    vtkErrorMacro(<< "Ellipse normal vector and major radius axis are collinear");
    return 0;
  }

  vtkMath::Normalize(orthogonalVect);

  // get major Radius Vector adjusted to be on the plane defined by this->Normal
  vtkMath::Cross(orthogonalVect, this->Normal, majorRadiusVect);

  vtkMath::Normalize(majorRadiusVect);

  // set the major and minor Radius values
  a = vtkMath::Norm(this->MajorRadiusVector);
  b = a * this->Ratio;

  // user-defined angles (positive only)
  startAngleRad = vtkMath::RadiansFromDegrees(this->StartAngle);
  if (startAngleRad < 0)
  {
    startAngleRad += 2.0 * vtkMath::Pi();
  }

  segmentAngleRad = vtkMath::RadiansFromDegrees(this->SegmentAngle);

  // Calcute angle increment
  angleIncRad = segmentAngleRad / this->Resolution;

  // Now create arc points and segments
  vtkNew<vtkPoints> newPoints;

  // Set the desired precision for the points in the output.
  if (this->OutputPointsPrecision == vtkAlgorithm::DOUBLE_PRECISION)
  {
    newPoints->SetDataType(VTK_DOUBLE);
  }
  else
  {
    newPoints->SetDataType(VTK_FLOAT);
  }

  newPoints->Allocate(numPts);
  vtkNew<vtkFloatArray> newTCoords;
  newTCoords->SetNumberOfComponents(2);
  newTCoords->Allocate(2 * numPts);
  newTCoords->SetName("Texture Coordinates");
  vtkNew<vtkCellArray> newLines;
  newLines->Allocate(newLines->EstimateSize(numLines, 2));

  double theta = startAngleRad;
  double thetaEllipse;
  // Iterate over angle increments
  for (int i = 0; i <= this->Resolution; ++i, theta += angleIncRad)
  {
    // convert section angle to an angle applied to ellipse equation.
    // the result point with the ellipse angle, will be located on section angle
    int quotient = (int)(theta / (2.0 * vtkMath::Pi()));
    theta = theta - quotient * 2.0 * vtkMath::Pi();

    // result range: -pi/2, pi/2
    thetaEllipse = atan(tan(theta) / this->Ratio);

    //theta range: 0, 2 * pi
    if (theta > vtkMath::Pi() / 2 && theta <= vtkMath::Pi())
    {
      thetaEllipse += vtkMath::Pi();
    }
    else if (theta > vtkMath::Pi() && theta <= 1.5 * vtkMath::Pi())
    {
      thetaEllipse -= vtkMath::Pi();
    }

    const double cosTheta = cos(thetaEllipse);
    const double sinTheta = sin(thetaEllipse);
    double p[3] =
      {
      this->Center[0] + a * cosTheta * majorRadiusVect[0] + b * sinTheta * orthogonalVect[0],
      this->Center[1] + a * cosTheta * majorRadiusVect[1] + b * sinTheta * orthogonalVect[1],
      this->Center[2] + a * cosTheta * majorRadiusVect[2] + b * sinTheta * orthogonalVect[2]
      };

    tc[0] = static_cast<double>(i) / this->Resolution;
    newPoints->InsertPoint(i , p);
    newTCoords->InsertTuple(i, tc);
  }

  newLines->InsertNextCell(numPts);
  for (int k = 0; k < numPts; ++ k)
  {
    newLines->InsertCellPoint(k);
  }

  output->SetPoints(newPoints.Get());
  output->GetPointData()->SetTCoords(newTCoords.Get());
  output->SetLines(newLines.Get());
  return 1;
}

// --------------------------------------------------------------------------
void vtkEllipseArcSource::PrintSelf(ostream& os, vtkIndent indent)
{
  this->Superclass::PrintSelf(os, indent);

  os << indent << "Resolution: " << this->Resolution << "\n";

  os << indent << "Center: (" << this->Center[0] << ", "
    << this->Center[1] << ", "
    << this->Center[2] << ")\n";

  os << indent << "Normal: (" << this->Normal[0] << ", "
    << this->Normal[1] << ", "
    << this->Normal[2] << ")\n";

  os << indent << "Major Radius Vector: (" << this->MajorRadiusVector[0] << ", "
    << this->MajorRadiusVector[1] << ", "
    << this->MajorRadiusVector[2] << ")\n";

  os << indent << "StartAngle: " << this->StartAngle << "\n";
  os << indent << "SegmentAngle: " << this->SegmentAngle << "\n";

  os << indent << "Resolution: " << this->Resolution << "\n";
  os << indent << "Ratio: " << this->Ratio << "\n";

  os << indent << "Output Points Precision: " << this->OutputPointsPrecision << "\n";
}