File: vtkHyperTreeGridSource.cxx

package info (click to toggle)
vtk7 7.1.1%2Bdfsg1-12
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 125,776 kB
  • sloc: cpp: 1,539,582; ansic: 106,521; python: 78,038; tcl: 47,013; xml: 8,142; yacc: 5,040; java: 4,439; perl: 3,132; lex: 1,926; sh: 1,500; makefile: 122; objc: 83
file content (1184 lines) | stat: -rw-r--r-- 34,979 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
/*=========================================================================

Program:   Visualization Toolkit
Module:    vtkHyperTreeGridSource.cxx

Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
#include "vtkHyperTreeGridSource.h"

#include "vtkBitArray.h"
#include "vtkDataArray.h"
#include "vtkDoubleArray.h"
#include "vtkHyperTree.h"
#include "vtkHyperTreeCursor.h"
#include "vtkHyperTreeGrid.h"
#include "vtkIdTypeArray.h"
#include "vtkInformationVector.h"
#include "vtkInformation.h"
#include "vtkMath.h"
#include "vtkNew.h"
#include "vtkObjectFactory.h"
#include "vtkPointData.h"
#include "vtkQuadric.h"
#include "vtkStreamingDemandDrivenPipeline.h"

#include <sstream>

#include <cassert>

vtkStandardNewMacro(vtkHyperTreeGridSource);
vtkCxxSetObjectMacro(vtkHyperTreeGridSource, DescriptorBits, vtkBitArray);
vtkCxxSetObjectMacro(vtkHyperTreeGridSource, MaterialMaskBits, vtkBitArray);
vtkCxxSetObjectMacro(vtkHyperTreeGridSource, Quadric, vtkQuadric);


//----------------------------------------------------------------------------
vtkHyperTreeGridSource::vtkHyperTreeGridSource()
{
  // This a source: no input ports
  this->SetNumberOfInputPorts( 0 );

  // Grid parameters
  this->BranchFactor = 2;
  this->MaximumLevel = 1;
  this->BlockSize = 0;

  // Grid topology
  this->Dimension = 3;
  this->GridSize[0] = 1;
  this->GridSize[1] = 1;
  this->GridSize[2] = 1;
  this->TransposedRootIndexing = false;

  // Grid geometry
  this->Origin[0] = 0.;
  this->Origin[1] = 0.;
  this->Origin[2] = 0.;
  this->GridScale[0] = 1.;
  this->GridScale[1] = 1.;
  this->GridScale[2] = 1.;
  this->XCoordinates = vtkDoubleArray::New();
  this->XCoordinates->SetNumberOfTuples( 2 );
  this->XCoordinates->SetComponent( 0, 0, 0. );
  this->XCoordinates->SetComponent( 1, 0, this->GridScale[0] );
  this->YCoordinates = vtkDoubleArray::New();
  this->YCoordinates->SetNumberOfTuples( 2 );
  this->YCoordinates->SetComponent( 0, 0, 0. );
  this->YCoordinates->SetComponent( 1, 0, this->GridScale[1] );
  this->ZCoordinates = vtkDoubleArray::New();
  this->ZCoordinates->SetNumberOfTuples( 2 );
  this->ZCoordinates->SetComponent( 0, 0, 0. );
  this->ZCoordinates->SetComponent( 1, 0, this->GridScale[2] );

  // By default use the descriptor string
  this->UseDescriptor = true;

  // By default do not use the material mask
  this->UseMaterialMask = false;

  // Grid description & material mask as strings
  this->Descriptor = new char[2];
  this->Descriptor[0] = '.';
  this->Descriptor[1] = 0;
  this->MaterialMask = new char[2];
  this->MaterialMask[0] = '0';
  this->MaterialMask[1] = 0;

  // Grid description & material mask as bit arrays
  this->DescriptorBits = 0;
  this->MaterialMaskBits = 0;
  this->LevelZeroMaterialIndex = 0;
  this->LevelZeroMaterialMap.clear();

  // Default quadric is a sphere with radius 1
  this->Quadric = vtkQuadric::New();
  this->Quadric->SetCoefficients( 1., 1., 1.,
                                  0., 0., 0.,
                                  0., 0., 0.,
                                  -1. );

  // Keep reference to hyper tree grid output
  this->Output = 0;
}

//----------------------------------------------------------------------------
vtkHyperTreeGridSource::~vtkHyperTreeGridSource()
{
  if ( this->XCoordinates )
  {
    this->XCoordinates->UnRegister( this );
    this->XCoordinates = 0;
  }

  if ( this->YCoordinates )
  {
    this->YCoordinates->UnRegister( this );
    this->YCoordinates = 0;
  }

  if ( this->ZCoordinates )
  {
    this->ZCoordinates->UnRegister( this );
    this->ZCoordinates = 0;
  }

  if ( this->DescriptorBits )
  {
    this->DescriptorBits->UnRegister( this );
    this->DescriptorBits = 0;
  }

  if ( this->MaterialMaskBits )
  {
    this->MaterialMaskBits->UnRegister( this );
    this->MaterialMaskBits = 0;
  }

  if ( this->LevelZeroMaterialIndex )
  {
    this->LevelZeroMaterialIndex->UnRegister( this );
    this->LevelZeroMaterialIndex = 0;
  }

  this->LevelZeroMaterialMap.clear();

  delete [] this->Descriptor;
  this->Descriptor = 0;

  delete [] this->MaterialMask;
  this->MaterialMask = 0;

  if ( this->Quadric )
  {
    this->Quadric->UnRegister( this );
    this->Quadric = NULL;
  }
}

//-----------------------------------------------------------------------------
void vtkHyperTreeGridSource::PrintSelf( ostream& os, vtkIndent indent )
{
  this->Superclass::PrintSelf( os, indent );

  os << indent << "GridSize: "
     << this->GridSize[0] <<","
     << this->GridSize[1] <<","
     << this->GridSize[2] << endl;

  os << indent << "Origin: "
     << this->Origin[0] <<","
     << this->Origin[1] <<","
     << this->Origin[2] << endl;

  os << indent << "GridScale: "
     << this->GridScale[0] <<","
     << this->GridScale[1] <<","
     << this->GridScale[2] << endl;

  os << indent << "MaximumLevel: " << this->MaximumLevel << endl;
  os << indent << "Dimension: " << this->Dimension << endl;
  os << indent << "BranchFactor: " << this->BranchFactor << endl;
  os << indent << "BlockSize: " << this->BlockSize << endl;
  os << indent << "TransposedRootIndexing: " << this->TransposedRootIndexing << endl;

  if ( this->XCoordinates )
  {
    this->XCoordinates->PrintSelf( os, indent.GetNextIndent() );
  }
  if ( this->YCoordinates )
  {
    this->YCoordinates->PrintSelf( os, indent.GetNextIndent() );
  }
  if ( this->ZCoordinates )
  {
    this->ZCoordinates->PrintSelf( os, indent.GetNextIndent() );
  }

  os << indent << "UseDescriptor: " << this->UseDescriptor << endl;
  os << indent << "UseMaterialMask: " << this->UseMaterialMask << endl;
  os << indent << "Descriptor: " << this->Descriptor << endl;
  os << indent << "MaterialMask: " << this->Descriptor << endl;
  os << indent << "LevelDescriptors: " << this->LevelDescriptors.size() << endl;
  os << indent << "LevelMaterialMasks: " << this->LevelMaterialMasks.size() << endl;
  os << indent << "LevelCounters: " << this->LevelCounters.size() << endl;

  if ( this->Quadric )
  {
    this->Quadric->PrintSelf( os, indent.GetNextIndent() );
  }

  os << indent
     << "Output: ";
  if ( this->Output )
  {
    this->Output->PrintSelf( os, indent );
  }
  else
  {
    os << "(none)" << endl;
  }
}

//----------------------------------------------------------------------------
void vtkHyperTreeGridSource::SetIndexingModeToKJI()
{
  this->SetTransposedRootIndexing( false );
}

//----------------------------------------------------------------------------
void vtkHyperTreeGridSource::SetIndexingModeToIJK()
{
  this->SetTransposedRootIndexing( true );
}

//----------------------------------------------------------------------------
void vtkHyperTreeGridSource::SetLevelZeroMaterialIndex( vtkIdTypeArray* indexArray )
{
  if ( this->LevelZeroMaterialIndex == indexArray )
  {
    return;
  }

  if ( this->LevelZeroMaterialIndex )
  {
    this->LevelZeroMaterialIndex->UnRegister( this );
  }

  this->LevelZeroMaterialIndex = indexArray;
  this->LevelZeroMaterialIndex->Register( this );

  this->LevelZeroMaterialMap.clear();
  vtkIdType len = indexArray->GetNumberOfTuples();
  // Fill the map index - key is leaf number, value is index in the array that
  // will be used to fetch the descriptor value.
  for ( vtkIdType i = 0; i < len; ++ i )
  {
    this->LevelZeroMaterialMap[ indexArray->GetValue( i ) ] = i;
  }
  this->Modified();
}

//----------------------------------------------------------------------------
// Description:
// Return the maximum number of levels of the hypertree.
// \post positive_result: result>=1
unsigned int vtkHyperTreeGridSource::GetMaximumLevel()
{
  assert( "post: positive_result" && this->MaximumLevel >= 1 );
  return this->MaximumLevel;
}

//----------------------------------------------------------------------------
// Description:
// Set the maximum number of levels of the hypertrees. If
// GetMinLevels()>=levels, GetMinLevels() is changed to levels-1.
// \pre positive_levels: levels>=1
// \post is_set: this->GetLevels()==levels
// \post min_is_valid: this->GetMinLevels()<this->GetLevels()
void vtkHyperTreeGridSource::SetMaximumLevel( unsigned int levels )
{
  if ( levels < 1 )
  {
    levels = 1;
  }

  if ( this->MaximumLevel == levels )
  {
    return;
  }

  this->MaximumLevel = levels;
  this->Modified();

  assert( "post: is_set" && this->GetMaximumLevel() == levels );
}

//----------------------------------------------------------------------------
int vtkHyperTreeGridSource::RequestInformation( vtkInformation*,
                                                vtkInformationVector**,
                                                vtkInformationVector* outputVector )
{
  // get the info objects
  vtkInformation* outInfo = outputVector->GetInformationObject(0);

  // We cannot give the exact number of levels of the hypertrees
  // because it is not generated yet and this process depends on the recursion formula.
  // Just send an upper limit instead.
  outInfo->Set( vtkHyperTreeGrid::LEVELS(), this->MaximumLevel );
  outInfo->Set( vtkHyperTreeGrid::DIMENSION(), this->Dimension );

  double origin[3];
  origin[0] = this->XCoordinates->GetTuple1( 0 );
  origin[1] = this->YCoordinates->GetTuple1( 0 );
  origin[2] = this->ZCoordinates->GetTuple1( 0 );
  outInfo->Set( vtkDataObject::ORIGIN(), origin, 3 );

  int extent[6];
  extent[0] = 0;
  extent[1] = this->GridSize[0] - 1;
  extent[2] = 0;
  extent[3] = this->GridSize[1] - 1;
  extent[4] = 0;
  extent[5] = this->GridSize[2] - 1;
  outInfo->Set( vtkStreamingDemandDrivenPipeline::WHOLE_EXTENT(), extent, 6 );

  return 1;
}

//----------------------------------------------------------------------------
int vtkHyperTreeGridSource::RequestData( vtkInformation*,
                                         vtkInformationVector**,
                                         vtkInformationVector* outputVector )
{
  // Retrieve the output
  vtkInformation *outInfo = outputVector->GetInformationObject( 0 );
  this->Output =
    vtkHyperTreeGrid::SafeDownCast( outInfo->Get(vtkDataObject::DATA_OBJECT()) );
  if ( ! this->Output )
  {
    return 0;
  }
  vtkPointData* outData = this->Output->GetPointData();

  // TODO: add support for update extent
  //int updateExtent[6];
  //outInfo->Get( vtkStreamingDemandDrivenPipeline::UPDATE_EXTENT(), updateExtent );

  this->LevelBitsIndexCnt.clear();
  this->LevelBitsIndexCnt.push_back(0);

  // When using descriptor-based definition, initialize descriptor parsing
  if ( this->UseDescriptor )
  {
    // Calculate refined block size
    this->BlockSize = this->BranchFactor;
    for ( unsigned int i = 1; i < this->Dimension; ++ i )
    {
      this->BlockSize *= this->BranchFactor;
    }

    if ( ! this->DescriptorBits && ! this->InitializeFromStringDescriptor() )
    {
      return 0;
    }
    else if ( this->DescriptorBits && ! this->InitializeFromBitsDescriptor() )
    {
      return 0;
    }
  }

  // Set grid parameters
  this->Output->SetGridSize( this->GridSize );
  this->Output->SetTransposedRootIndexing( this->TransposedRootIndexing );
  this->Output->SetDimension( this->Dimension );
  this->Output->SetBranchFactor( this->BranchFactor );
  this->Output->SetMaterialMaskIndex( this->LevelZeroMaterialIndex );
  this->Output->GenerateTrees();

  // Create geometry
  for ( unsigned int i = 0; i < 3; ++ i )
  {
    vtkNew<vtkDoubleArray> coords;
    unsigned int n = this->GridSize[i] + 1;
    coords->SetNumberOfValues( n );
    for ( unsigned int j = 0; j < n; ++ j )
    {
      double coord = this->Origin[i] + this->GridScale[i] * static_cast<double>( j );
      coords->SetValue( j, coord );
    }

    switch ( i )
    {
      case 0:
        this->Output->SetXCoordinates( coords.GetPointer() );
        break;
      case 1:
        this->Output->SetYCoordinates( coords.GetPointer() );
        break;
      case 2:
        this->Output->SetZCoordinates( coords.GetPointer() );
        break;
      default:
        break;
    }
  }

  // Prepare array of doubles for depth values
  vtkNew<vtkDoubleArray> depthArray;
  depthArray->SetName( "Depth" );
  depthArray->SetNumberOfComponents( 1 );
  vtkIdType fact = 1;
  for ( unsigned int i = 1; i < this->MaximumLevel; ++ i )
  {
    fact *= this->BranchFactor;
  }
  fact *= fact;
  depthArray->Allocate( fact );
  outData->SetScalars( depthArray.GetPointer() );

  if ( ! this->UseDescriptor )
  {
    // Prepare array of doubles for quadric values
    vtkNew<vtkDoubleArray> quadricArray;
    quadricArray->SetName( "Quadric" );
    quadricArray->SetNumberOfComponents( 1 );

    quadricArray->Allocate( fact );
    outData->AddArray( quadricArray.GetPointer() );
  }

  // Iterate over all hyper trees
  vtkIdType index;
  vtkHyperTreeGrid::vtkHyperTreeIterator it;
  this->Output->InitializeTreeIterator( it );
  while ( vtkHyperTree* tree = it.GetNextTree( index ) )
  {
    unsigned int i, j, k;
    this->Output->GetLevelZeroCoordsFromIndex( index, i, j, k );

    // Initialize cursor
    vtkHyperTreeCursor* cursor = this->Output->NewCursor( index );
    if ( !cursor )
    {
      continue;
    }
    cursor->ToRoot();

    // Initialize local cell index
    int idx[3] = { 0, 0, 0 };

    if ( this->UseDescriptor )
    {
      this->InitTreeFromDescriptor( cursor, index, idx );
    }
    else
    {
      // Initialize the tree global start index with the number of
      // points added so far. This avoid the storage of a local
      // to global node id per tree.
      tree->SetGlobalIndexStart( this->LevelBitsIndexCnt[0] );

      // Initialize coordinate system for implicit function
      double origin[3];
      origin[0] = ( i % this->GridSize[0] ) * this->GridScale[0];
      origin[1] = ( j % this->GridSize[1] ) * this->GridScale[1];
      origin[2] = ( k % this->GridSize[2] ) * this->GridScale[2];
      // Subdivide based on quadric implicit function
      this->SubdivideFromQuadric( cursor, 0, index, idx, origin, this->GridScale );
    }

    // Clean up
    cursor->UnRegister( this );
  } // it

  // Squeeze output data arrays
  for ( int a = 0; a < outData->GetNumberOfArrays(); ++ a )
  {
    outData->GetArray( a )->Squeeze();
  }

  assert( "post: dataset_and_data_size_match" && this->Output->CheckAttributes() == 0 );

  this->LevelBitsIndexCnt.clear();
  this->LevelBitsIndex.clear();

  return 1;
}

//----------------------------------------------------------------------------
void vtkHyperTreeGridSource::InitTreeFromDescriptor( vtkHyperTreeCursor* cursor,
                                                      int treeIdx,
                                                      int idx[3])
{
  // Subdivide using descriptor
  if ( ! this->DescriptorBits )
  {
    this->SubdivideFromStringDescriptor( cursor, 0, treeIdx, 0, idx, 0 );
  }
  else
  {
    this->SubdivideFromBitsDescriptor( cursor, 0, treeIdx, 0, idx, 0 );
  }
}
//-----------------------------------------------------------------------------
int vtkHyperTreeGridSource::InitializeFromStringDescriptor()
{
  size_t descLen = strlen( this->Descriptor );

  // Verify that grid and material specifications are consistent
  if ( this->UseMaterialMask
        && strlen( this->MaterialMask ) != descLen )
  {
    vtkErrorMacro(<<"Material mask is used but has length "
                  << strlen( this->MaterialMask )
                  << " != "
                  << descLen
                  << " which is the length of the grid descriptor.");

    return 0;
  }

  // Calculate total level 0 grid size
  unsigned int nTotal = this->GridSize[0] * this->GridSize[1] * this->GridSize[2];

  // Parse string descriptor and material mask if used
  unsigned int nRefined = 0;
  unsigned int nLeaves = 0;
  unsigned int nNextLevel = nTotal;
  bool rootLevel = true;
  std::ostringstream descriptor;
  std::ostringstream mask;

  for ( size_t i = 0; i < descLen; ++ i )
  {
    char c = this->Descriptor[i];
    char m = this->UseMaterialMask ? this->MaterialMask[i] : 0;
    switch ( c )
    {
      case ' ':
        // Space is allowed as separator, verify mask consistenty if needed
        if ( this->UseMaterialMask && m != ' ' )
        {
          vtkErrorMacro(<<"Space separators do not match between "
            "descriptor and material mask.");
          return 0;
        }
        break; // case ' '

      case '|':
        //  A level is complete, verify mask consistenty if needed
        if ( this->UseMaterialMask && m != '|' )
        {
          vtkErrorMacro(<<"Level separators do not match between "
            "descriptor and material mask.");
          return 0;
        }

        // Store descriptor and material mask for current level
        this->LevelDescriptors.push_back( descriptor.str().c_str() );
        this->LevelMaterialMasks.push_back( mask.str().c_str() );

        // Check whether cursor is still at rool level
        if ( rootLevel )
        {
          rootLevel = false;

          // Verify that total number of root cells is consistent with descriptor
          if ( nRefined + nLeaves != nTotal )
          {
            vtkErrorMacro(<<"String "
                          << this->Descriptor
                          << " describes "
                          << nRefined + nLeaves
                          << " root cells != "
                          << nTotal);
            return 0;
          }
        } // if ( rootLevel )
        else
        {
          // Verify that level descriptor cardinality matches expected value
          if ( descriptor.str().size() != nNextLevel )
          {
            vtkErrorMacro(<<"String level descriptor "
                          << descriptor.str().c_str()
                          << " has cardinality "
                          << descriptor.str().size()
                          << " which is not expected value of "
                          << nNextLevel);

            return 0;
          }
        } // else

        // Predict next level descriptor cardinality
        nNextLevel = nRefined * this->BlockSize;

        // Reset per level values
        descriptor.str( "" );
        mask.str( "" );
        nRefined = 0;
        nLeaves = 0;
        break; // case '|'

      case '1':
      case 'R':
        //  Refined cell, verify mask consistenty if needed
        if ( this->UseMaterialMask && m == '0' )
        {
          vtkErrorMacro(<<"A refined branch must contain material.");
          return 0;
        }
        // Refined cell, update branch counter
        ++ nRefined;

        // Append characters to per level descriptor and material mask if used
        descriptor << c;
        if ( this->UseMaterialMask )
        {
          mask << m;
        }
        break; // case 'R'

      case '0':
      case '.':
        // Leaf cell, update leaf counter
        ++ nLeaves;

        // Append characters to per level descriptor and material mask if used
        descriptor << c;
        if ( this->UseMaterialMask )
        {
          mask << m;
        }
        break; // case '.'

      default:
        vtkErrorMacro(<< "Unrecognized character: "
                      << c
                      << " at pos " << i << " in descriptor "
                      << this->Descriptor);

        return 0; // default
    } // switch( c )
  } // c

  // Verify and append last level string
  if ( descriptor.str().size() != nNextLevel )
  {
    vtkErrorMacro(<<"String level descriptor "
                  << descriptor.str().c_str()
                  << " has cardinality "
                  << descriptor.str().size()
                  << " which is not expected value of "
                  << nNextLevel);

    return 0;
  }

  // Push per-level descriptor and material mask if used
  this->LevelDescriptors.push_back( descriptor.str().c_str() );
  if ( this->UseMaterialMask )
  {
    this->LevelMaterialMasks.push_back( mask.str().c_str() );
  }

  // Reset maximum depth if fewer levels are described
  unsigned int nLevels =
    static_cast<unsigned int>( this->LevelDescriptors.size() );
  if ( nLevels < this->MaximumLevel )
  {
    this->MaximumLevel = nLevels;
  }

  // Create vector of counters as long as tree depth
  for ( unsigned int i = 0; i < nLevels; ++ i )
  {
    this->LevelCounters.push_back( 0 );
  }

  this->LevelBitsIndex.clear();
  this->LevelBitsIndex.push_back(0);
  for ( unsigned int i = 1; i < nLevels; ++ i )
  {
    this->LevelBitsIndex.push_back(
      LevelBitsIndex[i-1] + this->LevelDescriptors[i-1].length());
  }
  this->LevelBitsIndexCnt = this->LevelBitsIndex;

  return 1;
}

//----------------------------------------------------------------------------
void vtkHyperTreeGridSource::SubdivideFromStringDescriptor(
  vtkHyperTreeCursor* cursor, unsigned int level, int treeIdx, int childIdx,
  int idx[3], int parentPos )
{
  // Get handle on leaf scalar data
  vtkDataArray* depthArray = this->Output->GetPointData()->GetArray( "Depth" );

  // Calculate pointer into level descriptor string
  int pointer = level ? childIdx + parentPos * this->BlockSize : treeIdx;

  // Calculate the node global index
  vtkIdType id = this->LevelBitsIndexCnt[level];
  this->LevelBitsIndexCnt[level]++;
  // Cell value: depth level
  depthArray->InsertTuple1( id, level );
  cursor->GetTree()->SetGlobalIndexFromLocal( cursor->GetNodeId(), id );

  // Subdivide further or stop recursion with terminal leaf
  if ( level + 1 < this->MaximumLevel
       && this->LevelDescriptors.at( level ).at( pointer ) == 'R' )
  {
    // Subdivide hyper tree grid leaf
    this->Output->SubdivideLeaf( cursor, treeIdx );

    // Now traverse to children
    int xDim = ( this->Dimension >= 1 ) ? this->BranchFactor : 1;
    int yDim = ( this->Dimension >= 2 ) ? this->BranchFactor : 1;
    int zDim = ( this->Dimension >= 3 ) ? this->BranchFactor : 1;

    int newChildIdx = 0;
    int newIdx[3];
    for ( int z = 0; z < zDim; ++ z )
    {
      newIdx[2] = idx[2] * zDim + z;
      for ( int y = 0; y < yDim; ++ y )
      {
        newIdx[1] = idx[1] * yDim + y;
        for ( int x = 0; x < xDim; ++ x )
        {
          newIdx[0] = idx[0] * xDim + x;

          // Set cursor to child
          cursor->ToChild( newChildIdx );

          // Recurse
          this->SubdivideFromStringDescriptor( cursor, level + 1, treeIdx,
            newChildIdx, newIdx, this->LevelCounters.at( level ) );

          // Reset cursor to parent
          cursor->ToParent();

          // Increment child index
          ++ newChildIdx;
        } // x
      } // y
    } // z

    // Increment current level counter
    ++ this->LevelCounters.at( level );
  } // if ( subdivide )
  else
  {
    bool isMasked = ( this->UseMaterialMask
         && this->LevelMaterialMasks.at( level ).at( pointer ) == '0' );
    // Blank leaf if needed
    this->Output->GetMaterialMask()->InsertTuple1( id, isMasked ? 1 : 0 );
  } // else
}

//----------------------------------------------------------------------------
int vtkHyperTreeGridSource::InitializeFromBitsDescriptor()
{
  // Verify that grid and material specifications are consistent
  if ( this->UseMaterialMask && ! this->LevelZeroMaterialIndex
    && this->MaterialMaskBits->GetSize() != this->DescriptorBits->GetSize() )
  {
    vtkErrorMacro(<<"Material mask is used but has length "
                  << this->MaterialMaskBits->GetSize() << " != "
                  << this->DescriptorBits->GetSize()
                  << " which is the length of the grid descriptor.");

    return 0;
  }

  // Calculate total level 0 grid size
  vtkIdType nTotal = this->LevelZeroMaterialIndex ?
    this->LevelZeroMaterialMap.size() :
    this->GridSize[0] * this->GridSize[1] * this->GridSize[2];

  // Parse descriptor and material mask if used
  this->LevelBitsIndex.clear();
  this->LevelBitsIndex.push_back(0);
  vtkIdType nRefined = 0;
  vtkIdType nLeaves = 0;
  vtkIdType nNextLevel = nTotal;
  vtkIdType nCurrentLevelCount = 0;
  vtkIdType descSize = this->DescriptorBits->GetNumberOfTuples();
  unsigned int nCurrentLevel = this->LevelZeroMaterialIndex ? 1 : 0;

  for ( vtkIdType i = 0; i < descSize; ++i )
  {
    if ( nCurrentLevelCount >= nNextLevel )
    {
      nNextLevel = nRefined * this->BlockSize;
      nRefined = 0;
      nLeaves = 0;
      nCurrentLevelCount = 0;
      nCurrentLevel++;
      this->LevelBitsIndex.push_back(i);
    }
    nRefined += this->DescriptorBits->GetValue(i);
    nLeaves += this->DescriptorBits->GetValue(i) == 0 ? 1 : 0;

    nCurrentLevelCount++;
  }

  this->LevelBitsIndexCnt = this->LevelBitsIndex;

  // Verify and append last level string
  if ( nCurrentLevelCount != nNextLevel )
  {
    vtkErrorMacro(<<"Level descriptor " << nCurrentLevel << " has cardinality "
                  << nCurrentLevelCount << " which is not expected value of "
                  << nNextLevel);

    return 0;
  }

  nCurrentLevel++;

  this->LevelBitsIndexCnt = this->LevelBitsIndex;

  // Reset maximum depth if fewer levels are described
  if ( nCurrentLevel < this->MaximumLevel )
  {
    this->MaximumLevel = nCurrentLevel;
  }

  // Create vector of counters as long as tree depth
  for ( unsigned int i = 0; i < nCurrentLevel; ++ i )
  {
    this->LevelCounters.push_back( 0 );
  }

  return 1;
}

//----------------------------------------------------------------------------
void vtkHyperTreeGridSource::SubdivideFromBitsDescriptor(
  vtkHyperTreeCursor* cursor, unsigned int level, int treeIdx, int childIdx,
  int idx[3], int parentPos )
{
  // Get handle on leaf scalar data
  vtkDataArray* depthArray = this->Output->GetPointData()->GetArray( "Depth" );

  vtkIdType startIdx = this->LevelBitsIndex[level];
  int pointer = level ? childIdx + parentPos * this->BlockSize : treeIdx;

  // Calculate the node global index
  vtkIdType id = this->LevelBitsIndexCnt[level];
  this->LevelBitsIndexCnt[level]++;

  // Cell value: depth level
  depthArray->InsertTuple1( id, level );

  // Set the global index of the node
  cursor->GetTree()->SetGlobalIndexFromLocal( cursor->GetNodeId(), id );

  bool refine = false;

  if ( this->LevelZeroMaterialIndex && level == 0 )
  {
    if ( this->LevelZeroMaterialMap.find( treeIdx ) !=
      this->LevelZeroMaterialMap.end() )
    {
       refine = this->DescriptorBits->GetValue(
         this->LevelZeroMaterialMap[ treeIdx ] ) == 1;
    }
  }
  else
  {
    // Calculate pointer into level descriptor string

    refine = this->DescriptorBits->GetValue( startIdx + pointer ) == 1;
  }

  // Subdivide further or stop recursion with terminal leaf
  if ( level + 1 < this->MaximumLevel && refine )
  {
    // Subdivide hyper tree grid leaf
    this->Output->SubdivideLeaf( cursor, treeIdx );

    // Now traverse to children
    int xDim = ( this->Dimension >= 1 ) ? this->BranchFactor : 1;
    int yDim = ( this->Dimension >= 2 ) ? this->BranchFactor : 1;
    int zDim = ( this->Dimension >= 3 ) ? this->BranchFactor : 1;

    int newChildIdx = 0;
    int newIdx[3];
    for ( int z = 0; z < zDim; ++ z )
    {
      newIdx[2] = idx[2] * zDim + z;
      for ( int y = 0; y < yDim; ++ y )
      {
        newIdx[1] = idx[1] * yDim + y;
        for ( int x = 0; x < xDim; ++ x )
        {
          newIdx[0] = idx[0] * xDim + x;

          // Set cursor to child
          cursor->ToChild( newChildIdx );

          // Recurse
          this->SubdivideFromBitsDescriptor(
            cursor, level + 1, treeIdx, newChildIdx, newIdx,
            this->LevelCounters.at( level ) );

          // Reset cursor to parent
          cursor->ToParent();

          // Increment child index
          ++ newChildIdx;
        } // x
      } // y
    } // z

    // Increment current level counter
    ++ this->LevelCounters.at( level );

    this->Output->GetMaterialMask()->InsertTuple1( id, 0 );
  } // if ( subdivide )
  else
  {
    bool isMasked = false;

    if ( this->UseMaterialMask  )
    {
      if ( this->LevelZeroMaterialIndex )
      {
        isMasked = ( level == 0 ) ? false : this->MaterialMaskBits->GetValue(
          startIdx - this->LevelBitsIndex[1] + pointer ) == 0;
      }
      else
      {
        isMasked = this->MaterialMaskBits->GetValue( startIdx + pointer ) == 0;
      }
    }
    // Blank leaf if needed
    this->Output->GetMaterialMask()->InsertTuple1( id, isMasked ? 1 : 0 );
  } // else
}

//-----------------------------------------------------------------------------
void vtkHyperTreeGridSource::SubdivideFromQuadric( vtkHyperTreeCursor* cursor,
                                                   unsigned int level,
                                                   int treeIdx,
                                                   const int idx[3],
                                                   double origin[3],
                                                   double size[3] )
{
  // Get handle on leaf scalar data
  vtkPointData* outData = this->Output->GetPointData();
  vtkDataArray* depthArray = outData->GetArray( "Depth" );
  vtkDataArray* quadricArray = outData->GetArray( "Quadric" );

    // Calculate the node global index
  vtkIdType id =
    cursor->GetTree()->GetGlobalIndexFromLocal( cursor->GetNodeId() );
  this->LevelBitsIndexCnt[0]++;

  // Compute cell origin coordinates
  double O[] = { 0., 0., 0. };
  for ( unsigned int d = 0; d < this->Dimension; ++ d )
  {
    O[d] = origin[d] + idx[d] * size[d];
  }

  // Iterate over all vertices
  int nPos = 0;
  int nNeg = 0;
  double sum = 0.;
  double nVert = 1 << this->Dimension;
  for ( int v = 0; v < nVert; ++ v )
  {
    // Transform flat index into triple
    div_t d1 = div( v, 2 );
    div_t d2 = div( d1.quot, 2 );

    // Compute vertex coordinates
    double pt[3];
    pt[0] = O[0] + d1.rem * size[0];
    pt[1] = O[1] + d2.rem * size[1];
    pt[2] = O[2] + d2.quot * size[2];

    // Evaluate quadric at current vertex
    double qv = this->Quadric->EvaluateFunction( pt );
    if ( qv > 0 )
    {
      // Found positive value at this vertex
      ++ nPos;

      // Update integral
      sum += qv;
    }
    else if ( qv < 0 )
    {
      // Found negative value at this vertex
      ++ nNeg;

      // Update integral
      sum += qv;
    }
  } // v

  // Subdivide iff quadric changes sign within cell
  bool subdivide = ( nPos != nVert && nNeg != nVert ) ? true : false;

  // Assign cell value
  if ( subdivide && level + 1 == this->MaximumLevel )
  {
    // Intersecting cells at deepest level are 0-set
    sum = 0.;
  }
  else
  {
    // Cell value is average of all corner quadric values
    sum /= nVert;
  }

  // Cell value: depth level
  depthArray->InsertTuple1( id, level );

  // Subdivide further or stop recursion with terminal leaf
  if ( subdivide && level + 1 < this->MaximumLevel )
  {
    // Cell is subdivided so it cannot be masked
    this->Output->GetMaterialMask()->InsertTuple1( id, 0 );

    // Subdivide hyper tree grid leaf
    this->Output->SubdivideLeaf( cursor, treeIdx );

    // Now traverse to children
    int xDim = this->BranchFactor;
    int yDim = this->Dimension > 1 ? this->BranchFactor : 1;
    int zDim = this->Dimension > 2 ? this->BranchFactor : 1;
    double newSize[] = { 0., 0., 0. };
    switch ( this->Dimension )
    {
      case 3:
        newSize[2] = size[2] / this->BranchFactor;
        VTK_FALLTHROUGH;
      case 2:
        newSize[1] = size[1] / this->BranchFactor;
        VTK_FALLTHROUGH;
      case 1:
        newSize[0] = size[0] / this->BranchFactor;
        break;
    }

    int newChildIdx = 0;
    int newIdx[3];
    for ( int z = 0; z < zDim; ++ z )
    {
      newIdx[2] = idx[2] * zDim + z;
      for ( int y = 0; y < yDim; ++ y )
      {
        newIdx[1] = idx[1] * yDim + y;
        for ( int x = 0; x < xDim; ++ x )
        {
          newIdx[0] = idx[0] * xDim + x;

          // Set cursor to child
          cursor->ToChild( newChildIdx );

          // Recurse
          this->SubdivideFromQuadric( cursor, level + 1, treeIdx, newIdx,
                                      origin, newSize );

          // Reset cursor to parent
          cursor->ToParent();

          // Increment child index
          ++ newChildIdx;
        } // x
      } // y
    } // z
  } // if ( subdivide )
  else
  {
    bool isMasked = this->UseMaterialMask && nPos > 0;

    // Blank leaf if needed
    this->Output->GetMaterialMask()->InsertTuple1( id, isMasked ? 1 : 0 );

    // Cell values: depth level and quadric function value
    depthArray->InsertTuple1( id, level );
    quadricArray->InsertTuple1( id, sum );
  } // else
}
//-----------------------------------------------------------------------------
void vtkHyperTreeGridSource::SetQuadricCoefficients( double a[10] )
{
  if ( ! this->Quadric )
  {
    this->Quadric = vtkQuadric::New();
  }
  this->Quadric->SetCoefficients( a );
  this->Modified();
}

//-----------------------------------------------------------------------------
void vtkHyperTreeGridSource::GetQuadricCoefficients( double a[10] )
{
  this->Quadric->GetCoefficients( a );
}

//-----------------------------------------------------------------------------
double* vtkHyperTreeGridSource::GetQuadricCoefficients()
{
  return this->Quadric->GetCoefficients();
}

//----------------------------------------------------------------------------
vtkMTimeType vtkHyperTreeGridSource::GetMTime()
{
  vtkMTimeType mTime = this->Superclass::GetMTime();

  if ( this->Quadric )
  {
    vtkMTimeType time = this->Quadric->GetMTime();
    mTime = ( time > mTime ? time : mTime );
  }

  return mTime;
}

//----------------------------------------------------------------------------
vtkBitArray* vtkHyperTreeGridSource::ConvertDescriptorStringToBitArray(
  const std::string& str )
{
  vtkBitArray* desc = vtkBitArray::New();
  desc->Allocate( str.length() );
  for ( std::string::const_iterator dit = str.begin();
    dit != str.end();  ++ dit )
  {
    switch ( *dit )
    {
      case '_':
      case '-':
      case ' ':
      case '|':
        break;

      case '1':
      case 'R':
        //  Refined cell
        desc->InsertNextValue(1);
        break;

      case '0':
      case '.':
        // Leaf cell
        desc->InsertNextValue(0);
        break;

      default:
        vtkErrorMacro(<< "Unrecognized character: "
                      << *dit
                      << " in string "
                      << str);
        desc->Delete();
        return 0;
    } // switch( *dit )
  }
  desc->Squeeze();
  return desc;
}

//----------------------------------------------------------------------------
vtkBitArray* vtkHyperTreeGridSource::ConvertMaterialMaskStringToBitArray(
  const std::string& str )
{
  return ConvertDescriptorStringToBitArray( str );
}