1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
|
/*=========================================================================
Program: Visualization Toolkit
Module: vtkSuperquadricSource.cxx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
/* vtkSuperquadric originally written by Michael Halle,
Brigham and Women's Hospital, July 1998.
Based on "Rigid physically based superquadrics", A. H. Barr,
in "Graphics Gems III", David Kirk, ed., Academic Press, 1992.
*/
#include "vtkSuperquadricSource.h"
#include "vtkCellArray.h"
#include "vtkFloatArray.h"
#include "vtkMath.h"
#include "vtkInformation.h"
#include "vtkInformationVector.h"
#include "vtkObjectFactory.h"
#include "vtkPointData.h"
#include "vtkPoints.h"
#include "vtkPolyData.h"
#include <cmath>
vtkStandardNewMacro(vtkSuperquadricSource);
static void evalSuperquadric(double u, double v,
double du, double dv,
double e, double n,
double dims[3],
double alpha,
double xyz[3],
double nrm[3]);
// Description:
vtkSuperquadricSource::vtkSuperquadricSource(int res)
{
res = res < 4 ? 4 : res;
this->AxisOfSymmetry = 1; // y-axis symmetry
this->Toroidal = 0;
this->Thickness = 0.3333;
this->PhiRoundness = 0.0;
this->SetPhiRoundness(1.0);
this->ThetaRoundness = 0.0;
this->SetThetaRoundness(1.0);
this->Center[0] = this->Center[1] = this->Center[2] = 0.0;
this->Scale[0] = this->Scale[1] = this->Scale[2] = 1.0;
this->Size = .5;
this->ThetaResolution = 0;
this->SetThetaResolution(res);
this->PhiResolution = 0;
this->SetPhiResolution(res);
this->OutputPointsPrecision = SINGLE_PRECISION;
this->SetNumberOfInputPorts(0);
}
void vtkSuperquadricSource::SetPhiResolution(int i)
{
if(i < 4)
{
i = 4;
}
i = (i+3)/4*4; // make it divisible by 4
if(i > VTK_MAX_SUPERQUADRIC_RESOLUTION)
{
i = VTK_MAX_SUPERQUADRIC_RESOLUTION;
}
if (this->PhiResolution != i)
{
this->PhiResolution = i;
this->Modified ();
}
}
void vtkSuperquadricSource::SetThetaResolution(int i)
{
if(i < 8)
{
i = 8;
}
i = (i+7)/8*8; // make it divisible by 8
if(i > VTK_MAX_SUPERQUADRIC_RESOLUTION)
{
i = VTK_MAX_SUPERQUADRIC_RESOLUTION;
}
if (this->ThetaResolution != i)
{
this->ThetaResolution = i;
this->Modified ();
}
}
void vtkSuperquadricSource::SetThetaRoundness(double e)
{
if(e < VTK_MIN_SUPERQUADRIC_ROUNDNESS)
{
e = VTK_MIN_SUPERQUADRIC_ROUNDNESS;
}
if (this->ThetaRoundness != e)
{
this->ThetaRoundness = e;
this->Modified();
}
}
void vtkSuperquadricSource::SetPhiRoundness(double e)
{
if(e < VTK_MIN_SUPERQUADRIC_ROUNDNESS)
{
e = VTK_MIN_SUPERQUADRIC_ROUNDNESS;
}
if (this->PhiRoundness != e)
{
this->PhiRoundness = e;
this->Modified();
}
}
static const double SQ_SMALL_OFFSET = 0.01;
int vtkSuperquadricSource::RequestData(
vtkInformation *vtkNotUsed(request),
vtkInformationVector **vtkNotUsed(inputVector),
vtkInformationVector *outputVector)
{
// get the info object
vtkInformation *outInfo = outputVector->GetInformationObject(0);
// get the ouptut
vtkPolyData *output = vtkPolyData::SafeDownCast(
outInfo->Get(vtkDataObject::DATA_OBJECT()));
int i, j;
vtkIdType numPts;
vtkPoints *newPoints;
vtkFloatArray *newNormals;
vtkFloatArray *newTCoords;
vtkCellArray *newPolys;
vtkIdType *ptidx;
double pt[3], nv[3], dims[3];
double len;
double alpha;
double deltaPhi, deltaTheta, phi, theta;
double phiLim[2], thetaLim[2];
double deltaPhiTex, deltaThetaTex;
int base, pbase;
vtkIdType numStrips;
int ptsPerStrip;
int phiSubsegs, thetaSubsegs, phiSegs, thetaSegs;
int iq, jq, rowOffset;
double thetaOffset, phiOffset;
double texCoord[2];
double tmp;
dims[0] = this->Scale[0] * this->Size;
dims[1] = this->Scale[1] * this->Size;
dims[2] = this->Scale[2] * this->Size;
if(this->Toroidal)
{
phiLim[0] = -vtkMath::Pi();
phiLim[1] = vtkMath::Pi();
thetaLim[0] = -vtkMath::Pi();
thetaLim[1] = vtkMath::Pi();
alpha = (1.0 / this->Thickness);
dims[0] /= (alpha + 1.0);
dims[1] /= (alpha + 1.0);
dims[2] /= (alpha + 1.0);
}
else
{
//Ellipsoidal
phiLim[0] = -vtkMath::Pi() / 2.0;
phiLim[1] = vtkMath::Pi() / 2.0;
thetaLim[0] = -vtkMath::Pi();
thetaLim[1] = vtkMath::Pi();
alpha = 0.0;
}
deltaPhi = (phiLim[1] - phiLim[0]) / this->PhiResolution;
deltaPhiTex = 1.0 / this->PhiResolution;
deltaTheta = (thetaLim[1] - thetaLim[0]) / this->ThetaResolution;
deltaThetaTex = 1.0 / this->ThetaResolution;
phiSegs = 4;
thetaSegs = 8;
phiSubsegs = this->PhiResolution / phiSegs;
thetaSubsegs = this->ThetaResolution / thetaSegs;
numPts = (this->PhiResolution + phiSegs)*(this->ThetaResolution + thetaSegs);
// creating triangles
numStrips = this->PhiResolution * thetaSegs;
ptsPerStrip = thetaSubsegs*2 + 2;
//
// Set things up; allocate memory
//
newPoints = vtkPoints::New();
// Set the desired precision for the points in the output.
if(this->OutputPointsPrecision == vtkAlgorithm::DOUBLE_PRECISION)
{
newPoints->SetDataType(VTK_DOUBLE);
}
else
{
newPoints->SetDataType(VTK_FLOAT);
}
newPoints->Allocate(numPts);
newNormals = vtkFloatArray::New();
newNormals->SetNumberOfComponents(3);
newNormals->Allocate(3*numPts);
newNormals->SetName("Normals");
newTCoords = vtkFloatArray::New();
newTCoords->SetNumberOfComponents(2);
newTCoords->Allocate(2*numPts);
newTCoords->SetName("TextureCoords");
newPolys = vtkCellArray::New();
newPolys->Allocate(newPolys->EstimateSize(numStrips,ptsPerStrip));
// generate!
for(iq = 0; iq < phiSegs; iq++)
{
for(i = 0; i <= phiSubsegs; i++)
{
phi = phiLim[0] + deltaPhi*(i + iq*phiSubsegs);
texCoord[1] = deltaPhiTex*(i + iq*phiSubsegs);
// SQ_SMALL_OFFSET makes sure that the normal vector isn't
// evaluated exactly on a crease; if that were to happen,
// large shading errors can occur.
if(i == 0)
{
phiOffset = SQ_SMALL_OFFSET*deltaPhi;
}
else if (i == phiSubsegs)
{
phiOffset = -SQ_SMALL_OFFSET*deltaPhi;
}
else
{
phiOffset = 0.0;
}
for(jq = 0; jq < thetaSegs; jq++)
{
for(j = 0; j <= thetaSubsegs; j++)
{
theta = thetaLim[0] + deltaTheta*(j + jq*thetaSubsegs);
texCoord[0] = deltaThetaTex*(j + jq*thetaSubsegs);
if(j == 0)
{
thetaOffset = SQ_SMALL_OFFSET*deltaTheta;
}
else if (j == thetaSubsegs)
{
thetaOffset = -SQ_SMALL_OFFSET*deltaTheta;
}
else
{
thetaOffset = 0.0;
}
// This gives a superquadric with axis of symmetry: z
evalSuperquadric(theta, phi,
thetaOffset, phiOffset,
this->ThetaRoundness, this->PhiRoundness,
dims, alpha, pt, nv);
switch (this->AxisOfSymmetry)
{
case 0:
// x-axis
tmp = pt[0];
pt[0] = pt[2];
pt[2] = tmp;
pt[1] = -pt[1];
tmp = nv[0];
nv[0] = nv[2];
nv[2] = tmp;
nv[1] = -nv[1];
break;
case 1:
// y-axis
tmp = pt[1];
pt[1] = pt[2];
pt[2] = tmp;
pt[0] = -pt[0];
tmp = nv[1];
nv[1] = nv[2];
nv[2] = tmp;
nv[0] = -nv[0];
break;
case 2:
default:
// Default case is managed above
break;
}
if((len = vtkMath::Norm(nv)) == 0.0)
{
len = 1.0;
}
nv[0] /= len; nv[1] /= len; nv[2] /= len;
if(!this->Toroidal &&
((iq == 0 && i == 0) || (iq == (phiSegs-1) && i == phiSubsegs)))
{
// we're at a pole:
// make sure the pole is at the same location for all evals
// (the superquadric evaluation is numerically unstable
// at the poles)
switch (this->AxisOfSymmetry)
{
case 0:
// x-axis
pt[1] = pt[2] = 0.0;
break;
case 1:
// y-axis
pt[0] = pt[2] = 0.0;
break;
case 2:
default:
// z-axis
pt[0] = pt[1] = 0.0;
break;
}
}
pt[0] += this->Center[0];
pt[1] += this->Center[1];
pt[2] += this->Center[2];
newPoints->InsertNextPoint(pt);
newNormals->InsertNextTuple(nv);
newTCoords->InsertNextTuple(texCoord);
}
}
}
}
// mesh!
// build triangle strips for efficiency....
ptidx = new vtkIdType[ptsPerStrip];
rowOffset = this->ThetaResolution+thetaSegs;
for(iq = 0; iq < phiSegs; iq++)
{
for(i = 0; i < phiSubsegs; i++)
{
pbase = rowOffset*(i +iq*(phiSubsegs+1));
for(jq = 0; jq < thetaSegs; jq++)
{
base = pbase + jq*(thetaSubsegs+1);
for(j = 0; j <= thetaSubsegs; j++)
{
ptidx[2*j] = base + rowOffset + j;
ptidx[2*j+1] = base + j;
}
newPolys->InsertNextCell(ptsPerStrip, ptidx);
}
}
}
delete[] ptidx;
output->SetPoints(newPoints);
newPoints->Delete();
output->GetPointData()->SetNormals(newNormals);
newNormals->Delete();
output->GetPointData()->SetTCoords(newTCoords);
newTCoords->Delete();
output->SetStrips(newPolys);
newPolys->Delete();
return 1;
}
void vtkSuperquadricSource::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os,indent);
os << indent << "Toroidal: " << (this->Toroidal ? "On\n" : "Off\n");
os << indent << "Axis Of Symmetry: " << this->AxisOfSymmetry << "\n";
os << indent << "Size: " << this->Size << "\n";
os << indent << "Thickness: " << this->Thickness << "\n";
os << indent << "Theta Resolution: " << this->ThetaResolution << "\n";
os << indent << "Theta Roundness: " << this->ThetaRoundness << "\n";
os << indent << "Phi Resolution: " << this->PhiResolution << "\n";
os << indent << "Phi Roundness: " << this->PhiRoundness << "\n";
os << indent << "Center: (" << this->Center[0] << ", "
<< this->Center[1] << ", " << this->Center[2] << ")\n";
os << indent << "Scale: (" << this->Scale[0] << ", "
<< this->Scale[1] << ", " << this->Scale[2] << ")\n";
os << indent << "Output Points Precision: " << this->OutputPointsPrecision
<< "\n";
}
static double cf(double w, double m, double a = 0)
{
double c;
double sgn;
if (w == vtkMath::Pi() || w == -vtkMath::Pi())
{
c = -1.0;
}
else
{
c = cos(w);
}
sgn = c < 0.0 ? -1.0 : 1.0;
return a + sgn*pow(sgn*c, m);
}
static double sf(double w, double m)
{
double s;
double sgn;
if (w == vtkMath::Pi() || w == -vtkMath::Pi())
{
s = 0.0;
}
else
{
s = sin(w);
}
sgn = s < 0.0 ? -1.0 : 1.0;
return sgn*pow(sgn*s, m);
}
static void evalSuperquadric(double theta, double phi, // parametric coords
double dtheta, double dphi, // offsets for normals
double rtheta, double rphi, // roundness params
double dims[3], // x, y, z dimensions
double alpha, // hole size
double xyz[3], // output coords
double nrm[3]) // output normals
{
// axis of symmetry: z
double cf1, cf2;
cf1 = cf(phi, rphi, alpha);
xyz[0] = -dims[0] * cf1 * sf(theta, rtheta);
xyz[1] = dims[1] * cf1 * cf(theta, rtheta);
xyz[2] = dims[2] * sf(phi, rphi);
cf2 = cf(phi+dphi, 2.0-rphi);
nrm[0] = -1.0/dims[0] * cf2 * sf(theta+dtheta, 2.0-rtheta);
nrm[1] = 1.0/dims[1] * cf2 * cf(theta+dtheta, 2.0-rtheta);
nrm[2] = 1.0/dims[2] * sf(phi+dphi, 2.0-rphi);
}
|