1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
|
/*=========================================================================
Program: Visualization Toolkit
Module: TestRRandomTableSource.cxx
-------------------------------------------------------------------------
Copyright 2008 Sandia Corporation.
Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
the U.S. Government retains certain rights in this software.
-------------------------------------------------------------------------
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include <vtkRCalculatorFilter.h>
#include <vtkSmartPointer.h>
#include <vtkRRandomTableSource.h>
#include <vtkDescriptiveStatistics.h>
#include <vtkMultiBlockDataSet.h>
#include <vtkTable.h>
#include <vtkVariant.h>
#include <iostream>
#include <sstream>
#include <stdexcept>
namespace
{
#define test_expression(expression) \
{ \
if(!(expression)) \
{ \
std::ostringstream buffer; \
buffer << "Expression failed at line " << __LINE__ << ": " << #expression; \
throw std::runtime_error(buffer.str()); \
} \
}
bool doubleEquals(double left, double right, double epsilon) {
return (fabs(left - right) < epsilon);
}
}
int TestRRandomTableSource(int vtkNotUsed(argc), char *vtkNotUsed(argv)[])
{
try
{
double mean_nd = 5.0;
double sd_nd = 2.5;
double lambda_pd = 3.0;
double k_csd = 3.0;
double lb_ud = 5.0;
double ub_ud = 100.0;
double nt_bd = 100;
double ps_bd = 0.2;
vtkRRandomTableSource* rts = vtkRRandomTableSource::New();
vtkDescriptiveStatistics* dsf = vtkDescriptiveStatistics::New();
rts->SetNumberOfRows(100000);
rts->SetStatisticalDistributionForColumn(vtkRRandomTableSource::NORMAL,mean_nd,sd_nd,0.0,"Normal",0);
rts->SetStatisticalDistributionForColumn(vtkRRandomTableSource::POISSON,lambda_pd,0.0,0.0,"Poisson",1);
rts->SetStatisticalDistributionForColumn(vtkRRandomTableSource::CHISQUARE,k_csd,0.0,0.0,"Chi-Square",2);
rts->SetStatisticalDistributionForColumn(vtkRRandomTableSource::UNIF,lb_ud,ub_ud,0.0,"Uniform",3);
rts->SetStatisticalDistributionForColumn(vtkRRandomTableSource::BINOMIAL,nt_bd,ps_bd,0.0,"Binomial",4);
dsf->SetInputConnection(rts->GetOutputPort());
dsf->AddColumn("Normal");
dsf->AddColumn("Poisson");
dsf->AddColumn("Chi-Square");
dsf->AddColumn("Uniform");
dsf->AddColumn("Binomial");
dsf->SetLearnOption( true );
dsf->SetDeriveOption( true );
dsf->Update();
vtkMultiBlockDataSet* outputMetaDS = vtkMultiBlockDataSet::SafeDownCast( dsf->GetOutputDataObject( vtkStatisticsAlgorithm::OUTPUT_MODEL ) );
vtkTable* outputPrimary = vtkTable::SafeDownCast( outputMetaDS->GetBlock( 0 ) );
vtkTable* outputDerived = vtkTable::SafeDownCast( outputMetaDS->GetBlock( 1 ) );
for ( vtkIdType r = 0; r < outputPrimary->GetNumberOfRows(); ++ r )
{
if(!strcmp(outputPrimary->GetValueByName(r, "Variable").ToString(),"Normal"))
{
test_expression(doubleEquals(outputPrimary->GetValueByName(r,"Mean").ToDouble(),mean_nd,1.0));
test_expression(doubleEquals(outputDerived->GetValueByName(r,"Standard Deviation").ToDouble(),sd_nd,1.0));
test_expression(doubleEquals(outputDerived->GetValueByName(r,"Skewness").ToDouble(),0.0,1.0));
test_expression(doubleEquals(outputDerived->GetValueByName(r,"Kurtosis").ToDouble(),0.0,1.0));
}
else if(!strcmp(outputPrimary->GetValueByName(r, "Variable").ToString(),"Poisson"))
{
test_expression(doubleEquals(outputPrimary->GetValueByName(r,"Mean").ToDouble(),lambda_pd,1.0));
test_expression(doubleEquals(outputDerived->GetValueByName(r,"Standard Deviation").ToDouble(),sqrt(lambda_pd),1.0));
test_expression(doubleEquals(outputDerived->GetValueByName(r,"Skewness").ToDouble(),1.0/sqrt(lambda_pd),1.0));
test_expression(doubleEquals(outputDerived->GetValueByName(r,"Kurtosis").ToDouble(),1.0/lambda_pd,1.0));
}
else if(!strcmp(outputPrimary->GetValueByName(r, "Variable").ToString(),"Chi-Square"))
{
test_expression(doubleEquals(outputPrimary->GetValueByName(r,"Mean").ToDouble(),k_csd,1.0));
test_expression(doubleEquals(outputDerived->GetValueByName(r,"Standard Deviation").ToDouble(),sqrt(2.0*k_csd),1.0));
test_expression(doubleEquals(outputDerived->GetValueByName(r,"Skewness").ToDouble(),sqrt(8.0/k_csd),1.0));
test_expression(doubleEquals(outputDerived->GetValueByName(r,"Kurtosis").ToDouble(),12.0/k_csd,2.0));
}
else if(!strcmp(outputPrimary->GetValueByName(r, "Variable").ToString(),"Uniform"))
{
test_expression(doubleEquals(outputPrimary->GetValueByName(r,"Mean").ToDouble(),0.5*(lb_ud+ub_ud),1.0));
test_expression(doubleEquals(outputDerived->GetValueByName(r,"Standard Deviation").ToDouble(),sqrt((1.0/12.0)*pow((ub_ud-lb_ud),2)),1.0));
test_expression(doubleEquals(outputDerived->GetValueByName(r,"Skewness").ToDouble(),0.0,1.0));
test_expression(doubleEquals(outputDerived->GetValueByName(r,"Kurtosis").ToDouble(),-(6.0/5.0),1.0));
}
else if(!strcmp(outputPrimary->GetValueByName(r, "Variable").ToString(),"Binomial"))
{
test_expression(doubleEquals(outputPrimary->GetValueByName(r,"Mean").ToDouble(),nt_bd*ps_bd,1.0));
test_expression(doubleEquals(outputDerived->GetValueByName(r,"Standard Deviation").ToDouble(),sqrt(nt_bd*ps_bd*(1.0 - ps_bd)),1.0));
test_expression(doubleEquals(outputDerived->GetValueByName(r,"Skewness").ToDouble(),(1.0 - 2.0*ps_bd)/sqrt(nt_bd*ps_bd*(1.0 - ps_bd)),1.0));
test_expression(doubleEquals(outputDerived->GetValueByName(r,"Kurtosis").ToDouble(),(1.0 - 6.0*ps_bd*(1.0 - ps_bd))/(nt_bd*ps_bd*(1.0 - ps_bd)),1.0));
}
}
dsf->Delete();
rts->Delete();
return 0;
}
catch( std::exception& e )
{
cerr << e.what()
<< "\n";
return 1;
}
}
|