File: TestRRandomTableSource.cxx

package info (click to toggle)
vtk7 7.1.1%2Bdfsg1-12
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 125,776 kB
  • sloc: cpp: 1,539,582; ansic: 106,521; python: 78,038; tcl: 47,013; xml: 8,142; yacc: 5,040; java: 4,439; perl: 3,132; lex: 1,926; sh: 1,500; makefile: 122; objc: 83
file content (137 lines) | stat: -rw-r--r-- 6,613 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
/*=========================================================================

Program:   Visualization Toolkit
Module:    TestRRandomTableSource.cxx

-------------------------------------------------------------------------
Copyright 2008 Sandia Corporation.
Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
the U.S. Government retains certain rights in this software.
-------------------------------------------------------------------------

Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE.  See the above copyright notice for more information.

=========================================================================*/

#include <vtkRCalculatorFilter.h>
#include <vtkSmartPointer.h>
#include <vtkRRandomTableSource.h>
#include <vtkDescriptiveStatistics.h>
#include <vtkMultiBlockDataSet.h>
#include <vtkTable.h>
#include <vtkVariant.h>

#include <iostream>
#include <sstream>
#include <stdexcept>

namespace
{

#define test_expression(expression)                                     \
  {                                                                     \
    if(!(expression))                                                   \
    {                                                                 \
      std::ostringstream buffer;                                 \
      buffer << "Expression failed at line " << __LINE__ << ": " << #expression; \
      throw std::runtime_error(buffer.str());                        \
    }                                                                 \
  }

  bool doubleEquals(double left, double right, double epsilon) {
    return (fabs(left - right) < epsilon);
  }

}

int TestRRandomTableSource(int vtkNotUsed(argc), char *vtkNotUsed(argv)[])
{
  try
  {
    double mean_nd = 5.0;
    double sd_nd = 2.5;
    double lambda_pd = 3.0;
    double k_csd = 3.0;
    double lb_ud = 5.0;
    double ub_ud = 100.0;
    double nt_bd = 100;
    double ps_bd = 0.2;
    vtkRRandomTableSource* rts = vtkRRandomTableSource::New();
    vtkDescriptiveStatistics* dsf = vtkDescriptiveStatistics::New();
    rts->SetNumberOfRows(100000);
    rts->SetStatisticalDistributionForColumn(vtkRRandomTableSource::NORMAL,mean_nd,sd_nd,0.0,"Normal",0);
    rts->SetStatisticalDistributionForColumn(vtkRRandomTableSource::POISSON,lambda_pd,0.0,0.0,"Poisson",1);
    rts->SetStatisticalDistributionForColumn(vtkRRandomTableSource::CHISQUARE,k_csd,0.0,0.0,"Chi-Square",2);
    rts->SetStatisticalDistributionForColumn(vtkRRandomTableSource::UNIF,lb_ud,ub_ud,0.0,"Uniform",3);
    rts->SetStatisticalDistributionForColumn(vtkRRandomTableSource::BINOMIAL,nt_bd,ps_bd,0.0,"Binomial",4);
    dsf->SetInputConnection(rts->GetOutputPort());
    dsf->AddColumn("Normal");
    dsf->AddColumn("Poisson");
    dsf->AddColumn("Chi-Square");
    dsf->AddColumn("Uniform");
    dsf->AddColumn("Binomial");
    dsf->SetLearnOption( true );
    dsf->SetDeriveOption( true );
    dsf->Update();
    vtkMultiBlockDataSet* outputMetaDS = vtkMultiBlockDataSet::SafeDownCast( dsf->GetOutputDataObject( vtkStatisticsAlgorithm::OUTPUT_MODEL ) );
    vtkTable* outputPrimary = vtkTable::SafeDownCast( outputMetaDS->GetBlock( 0 ) );
    vtkTable* outputDerived = vtkTable::SafeDownCast( outputMetaDS->GetBlock( 1 ) );

    for ( vtkIdType r = 0; r < outputPrimary->GetNumberOfRows(); ++ r )
    {
      if(!strcmp(outputPrimary->GetValueByName(r, "Variable").ToString(),"Normal"))
      {
        test_expression(doubleEquals(outputPrimary->GetValueByName(r,"Mean").ToDouble(),mean_nd,1.0));
        test_expression(doubleEquals(outputDerived->GetValueByName(r,"Standard Deviation").ToDouble(),sd_nd,1.0));
        test_expression(doubleEquals(outputDerived->GetValueByName(r,"Skewness").ToDouble(),0.0,1.0));
        test_expression(doubleEquals(outputDerived->GetValueByName(r,"Kurtosis").ToDouble(),0.0,1.0));
      }
      else if(!strcmp(outputPrimary->GetValueByName(r, "Variable").ToString(),"Poisson"))
      {
        test_expression(doubleEquals(outputPrimary->GetValueByName(r,"Mean").ToDouble(),lambda_pd,1.0));
        test_expression(doubleEquals(outputDerived->GetValueByName(r,"Standard Deviation").ToDouble(),sqrt(lambda_pd),1.0));
        test_expression(doubleEquals(outputDerived->GetValueByName(r,"Skewness").ToDouble(),1.0/sqrt(lambda_pd),1.0));
        test_expression(doubleEquals(outputDerived->GetValueByName(r,"Kurtosis").ToDouble(),1.0/lambda_pd,1.0));
      }
      else if(!strcmp(outputPrimary->GetValueByName(r, "Variable").ToString(),"Chi-Square"))
      {
        test_expression(doubleEquals(outputPrimary->GetValueByName(r,"Mean").ToDouble(),k_csd,1.0));
        test_expression(doubleEquals(outputDerived->GetValueByName(r,"Standard Deviation").ToDouble(),sqrt(2.0*k_csd),1.0));
        test_expression(doubleEquals(outputDerived->GetValueByName(r,"Skewness").ToDouble(),sqrt(8.0/k_csd),1.0));
        test_expression(doubleEquals(outputDerived->GetValueByName(r,"Kurtosis").ToDouble(),12.0/k_csd,2.0));
      }
      else if(!strcmp(outputPrimary->GetValueByName(r, "Variable").ToString(),"Uniform"))
      {
        test_expression(doubleEquals(outputPrimary->GetValueByName(r,"Mean").ToDouble(),0.5*(lb_ud+ub_ud),1.0));
        test_expression(doubleEquals(outputDerived->GetValueByName(r,"Standard Deviation").ToDouble(),sqrt((1.0/12.0)*pow((ub_ud-lb_ud),2)),1.0));
        test_expression(doubleEquals(outputDerived->GetValueByName(r,"Skewness").ToDouble(),0.0,1.0));
        test_expression(doubleEquals(outputDerived->GetValueByName(r,"Kurtosis").ToDouble(),-(6.0/5.0),1.0));
      }
      else if(!strcmp(outputPrimary->GetValueByName(r, "Variable").ToString(),"Binomial"))
      {
        test_expression(doubleEquals(outputPrimary->GetValueByName(r,"Mean").ToDouble(),nt_bd*ps_bd,1.0));
        test_expression(doubleEquals(outputDerived->GetValueByName(r,"Standard Deviation").ToDouble(),sqrt(nt_bd*ps_bd*(1.0 - ps_bd)),1.0));
        test_expression(doubleEquals(outputDerived->GetValueByName(r,"Skewness").ToDouble(),(1.0 - 2.0*ps_bd)/sqrt(nt_bd*ps_bd*(1.0 - ps_bd)),1.0));
        test_expression(doubleEquals(outputDerived->GetValueByName(r,"Kurtosis").ToDouble(),(1.0 - 6.0*ps_bd*(1.0 - ps_bd))/(nt_bd*ps_bd*(1.0 - ps_bd)),1.0));
      }
    }

    dsf->Delete();
    rts->Delete();
    return 0;
  }

  catch( std::exception& e )
  {
    cerr << e.what()
         << "\n";
    return 1;
  }
}