File: vtkPCAStatisticsGnuR.h

package info (click to toggle)
vtk7 7.1.1%2Bdfsg1-12
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 125,776 kB
  • sloc: cpp: 1,539,582; ansic: 106,521; python: 78,038; tcl: 47,013; xml: 8,142; yacc: 5,040; java: 4,439; perl: 3,132; lex: 1,926; sh: 1,500; makefile: 122; objc: 83
file content (75 lines) | stat: -rw-r--r-- 2,836 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
/*=========================================================================

Program:   Visualization Toolkit
Module:    vtkPCAStatisticsGnuR.h

Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
/*-------------------------------------------------------------------------
  Copyright 2010 Sandia Corporation.
  Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
  the U.S. Government retains certain rights in this software.
  -------------------------------------------------------------------------*/
/**
 * @class   vtkPCAStatisticsGnuR
 * @brief   A class for multivariate principal component analysis
 * using R to calculate p-values.
 *
 *
 * This class derives from the multi-correlative statistics algorithm and
 * uses the covariance matrix and Cholesky decomposition computed by it.
 * However, when it finalizes the statistics in learn operation, the PCA class
 * computes the SVD of the covariance matrix in order to obtain its eigenvectors.
 *
 * In the assess operation, the input data are
 * - projected into the basis defined by the eigenvectors,
 * - the energy associated with each datum is computed,
 * - or some combination thereof.
 * Additionally, the user may specify some threshold energy or
 * eigenvector entry below which the basis is truncated. This allows
 * projection into a lower-dimensional state while minimizing (in a
 * least squares sense) the projection error.
 *
 * In the test operation, a Jarque-Bera-Srivastava test of n-d normality is performed.
 *
 * @par Thanks:
 * Thanks to David Thompson, Philippe Pebay and Jackson Mayo from
 * Sandia National Laboratories for implementing this class.
 * Updated by Philippe Pebay, Kitware SAS 2012
*/

#ifndef vtkPCAStatisticsGnuR_h
#define vtkPCAStatisticsGnuR_h

#include "vtkFiltersStatisticsGnuRModule.h" // For export macro
#include "vtkPCAStatistics.h"

class vtkDoubleArray;

class VTKFILTERSSTATISTICSGNUR_EXPORT vtkPCAStatisticsGnuR : public vtkPCAStatistics
{
public:
  vtkTypeMacro(vtkPCAStatisticsGnuR,vtkPCAStatistics);
  virtual void PrintSelf( ostream& os, vtkIndent indent );
  static vtkPCAStatisticsGnuR* New();

protected:
  vtkPCAStatisticsGnuR();
  ~vtkPCAStatisticsGnuR();

  virtual vtkDoubleArray* CalculatePValues(vtkIdTypeArray*, vtkDoubleArray*);

private:
  vtkPCAStatisticsGnuR(const vtkPCAStatisticsGnuR&) VTK_DELETE_FUNCTION;
  void operator=(const vtkPCAStatisticsGnuR&) VTK_DELETE_FUNCTION;
};

#endif // vtkPCAStatisticsGnuR_h