File: vtkNetCDFCAMReader.cxx

package info (click to toggle)
vtk7 7.1.1%2Bdfsg1-12
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 125,776 kB
  • sloc: cpp: 1,539,582; ansic: 106,521; python: 78,038; tcl: 47,013; xml: 8,142; yacc: 5,040; java: 4,439; perl: 3,132; lex: 1,926; sh: 1,500; makefile: 122; objc: 83
file content (870 lines) | stat: -rw-r--r-- 27,245 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkNetCDFCAMReader.cxx

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
#include "vtkNetCDFCAMReader.h"

#include "vtkCellArray.h"
#include "vtkDoubleArray.h"
#include "vtkFieldData.h"
#include "vtkFloatArray.h"
#include "vtkIncrementalOctreePointLocator.h"
#include "vtkInformation.h"
#include "vtkInformationVector.h"
#include "vtkMath.h"
#include "vtkNew.h"
#include "vtkObjectFactory.h"
#include "vtkPointData.h"
#include "vtkPolygon.h"
#include "vtkSmartPointer.h"
#include "vtkStreamingDemandDrivenPipeline.h"
#include "vtkUnstructuredGrid.h"

#include <vector>
#include <vtk_netcdfcpp.h>

namespace
{
// determine if this is a cell that wraps from 360 to 0 (i.e. if it's
// a cell that wraps from the right side of the domain to the left side)
  bool IsCellInverted(double points[4][3])
  {
    // We test the normal 3 points at a time. Not all grids are well-behaved
    // i.e. consistenly use 0 or 360. We've had grid where 3 points on the left
    // side, and just 1 on the right. Just checking the first 3 points (which is
    // what ComputeNormal() does, we may (and do) miss a few cells.
    // See BUG #0014897.
    double normal[3];
    vtkPolygon::ComputeNormal(3, points[0], normal);
    if(normal[2] > 0)
    {
      return true;
    }
    vtkPolygon::ComputeNormal(3, points[1], normal);
    if(normal[2] > 0)
    {
      return true;
    }
    return false;
  }

  template <class T>
  inline bool IsZero(const T& val)
  {
    return std::abs(val) < std::numeric_limits<T>::epsilon();
  }
}

vtkStandardNewMacro(vtkNetCDFCAMReader);

//----------------------------------------------------------------------------
vtkNetCDFCAMReader::vtkNetCDFCAMReader()
{
  this->FileName = NULL;
  this->CurrentFileName = NULL;
  this->ConnectivityFileName = NULL;
  this->CurrentConnectivityFileName = NULL;
  this->PointsFile = NULL;
  this->ConnectivityFile = NULL;
  this->SingleLevel = 0;
  this->TimeSteps = NULL;
  this->NumberOfTimeSteps = 0;
  this->SetNumberOfInputPorts(0);
  this->SetNumberOfOutputPorts(1);
}

//----------------------------------------------------------------------------
vtkNetCDFCAMReader::~vtkNetCDFCAMReader()
{
  this->SetFileName(NULL);
  this->SetCurrentFileName(NULL);
  this->SetConnectivityFileName(NULL);
  this->SetCurrentConnectivityFileName(NULL);
  delete this->PointsFile;
  this->PointsFile = NULL;
  delete this->ConnectivityFile;
  this->ConnectivityFile = NULL;
  delete []this->TimeSteps;
  this->TimeSteps = NULL;
}

//----------------------------------------------------------------------------
int vtkNetCDFCAMReader::CanReadFile(const char* fileName)
{
  NcFile file(fileName, NcFile::ReadOnly);
  return file.is_valid();
}

//----------------------------------------------------------------------------
void vtkNetCDFCAMReader::SetFileName(const char* fileName)
{
  vtkDebugMacro(<<" setting FileName to " << (fileName?fileName:"(null)") );
  if ( this->FileName == NULL && fileName == NULL)
  {
    return;
  }
  if ( this->FileName && fileName && (!strcmp(this->FileName,fileName)))
  {
    return;
  }
  delete this->PointsFile;
  this->PointsFile = NULL;
  delete [] this->FileName;
  this->FileName = NULL;
  if (fileName)
  {
    size_t n = strlen(fileName) + 1;
    char *cp1 =  new char[n];
    const char *cp2 = (fileName);
    this->FileName = cp1;
    do
    {
      *cp1++ = *cp2++;
    }
    while ( --n );
  }
   else
   {
    this->FileName = NULL;
   }
  this->Modified();
}

//----------------------------------------------------------------------------
void vtkNetCDFCAMReader::SetConnectivityFileName(const char* fileName)
{
  vtkDebugMacro(<<" setting ConnectivityFileName to "
                << (fileName?fileName:"(null)") );
  if ( this->ConnectivityFileName == NULL && fileName == NULL)
  {
    return;
  }
  if ( this->ConnectivityFileName && fileName &&
       (!strcmp(this->ConnectivityFileName,fileName)))
  {
    return;
  }
  delete this->ConnectivityFile;
  this->ConnectivityFile = NULL;
  delete [] this->ConnectivityFileName;
  if (fileName)
  {
    size_t n = strlen(fileName) + 1;
    char *cp1 =  new char[n];
    const char *cp2 = (fileName);
    this->ConnectivityFileName = cp1;
    do
    {
      *cp1++ = *cp2++;
    }
    while ( --n );
  }
   else
   {
    this->ConnectivityFileName = NULL;
   }
  this->Modified();
}

//----------------------------------------------------------------------------
int vtkNetCDFCAMReader::RequestInformation(
  vtkInformation* vtkNotUsed(reqInfo),
  vtkInformationVector** vtkNotUsed(inputVector),
  vtkInformationVector* outputVector)
{
  if(this->FileName == NULL)
  {
    vtkWarningMacro("Missing a file name.");
    return 0;
  }

  if(this->CurrentFileName != NULL &&
     strcmp(this->CurrentFileName, this->FileName) != 0)
  {
    delete this->PointsFile;
    this->PointsFile = NULL;
    this->SetCurrentFileName(NULL);
  }
  if(this->PointsFile == NULL)
  {
    this->PointsFile = new NcFile(this->FileName, NcFile::ReadOnly);
    if(this->PointsFile->is_valid() == 0)
    {
      vtkErrorMacro(<< "Can't read file " << this->FileName);
      delete this->PointsFile;
      this->PointsFile = NULL;
      return 0;
    }
    this->SetCurrentFileName(this->FileName);
  }
  NcDim* timeDimension = this->PointsFile->get_dim("time");
  if(timeDimension == NULL)
  {
    vtkErrorMacro("Cannot find the number of time steps (time dimension).");
    return 0;
  }
  this->NumberOfTimeSteps = timeDimension->size();
  vtkInformation* outInfo = outputVector->GetInformationObject(0);

  if (this->NumberOfTimeSteps > 0)
  {
    delete []this->TimeSteps;
    this->TimeSteps = new double[this->NumberOfTimeSteps];
    NcVar* timeVar = this->PointsFile->get_var("time");
    timeVar->get(this->TimeSteps, this->NumberOfTimeSteps);

    // Tell the pipeline what steps are available
    outInfo->Set(vtkStreamingDemandDrivenPipeline::TIME_STEPS(),
              this->TimeSteps, this->NumberOfTimeSteps);

    // Range is required to get GUI to show things
    double tRange[2] = {this->TimeSteps[0],
                        this->TimeSteps[this->NumberOfTimeSteps - 1]};
    outInfo->Set(vtkStreamingDemandDrivenPipeline::TIME_RANGE(), tRange, 2);
  }
  else
  {
    outInfo->Remove(vtkStreamingDemandDrivenPipeline::TIME_STEPS());
    outInfo->Remove(vtkStreamingDemandDrivenPipeline::TIME_RANGE());
  }

  outInfo->Set(
    CAN_HANDLE_PIECE_REQUEST(), 1);

  return 1;
}

//----------------------------------------------------------------------------
int vtkNetCDFCAMReader::RequestUpdateExtent(
  vtkInformation *,
  vtkInformationVector **,
  vtkInformationVector *outputVector)
{
  if(this->FileName == NULL || this->ConnectivityFileName == NULL)
  {
    vtkWarningMacro("Missing a file name.");
    return 0;
  }
  vtkInformation *outInfo = outputVector->GetInformationObject(0);

  int piece =
    outInfo->Get(vtkStreamingDemandDrivenPipeline::UPDATE_PIECE_NUMBER());
  int numPieces =
    outInfo->Get(vtkStreamingDemandDrivenPipeline::UPDATE_NUMBER_OF_PIECES());

  // make sure piece is valid
  if (piece < 0 || piece >= numPieces)
  {
    return 0;
  }

  return 1;
}

//----------------------------------------------------------------------------
int vtkNetCDFCAMReader::RequestData(
  vtkInformation *,vtkInformationVector **,vtkInformationVector *outputVector)
{
  if(this->FileName == NULL || this->ConnectivityFileName == NULL)
  {
    vtkWarningMacro("Missing a file name.");
    return 0;
  }

  vtkInformation *outInfo = outputVector->GetInformationObject(0);
  vtkUnstructuredGrid *output = vtkUnstructuredGrid::SafeDownCast(
    outInfo->Get(vtkDataObject::DATA_OBJECT()));

  vtkDebugMacro(<<"Reading NetCDF CAM file.");
  this->SetProgress(0);
  if(this->CurrentConnectivityFileName != NULL &&
     strcmp(this->CurrentConnectivityFileName, this->ConnectivityFileName) != 0)
  {
    delete this->ConnectivityFile;
    this->ConnectivityFile = NULL;
    this->SetCurrentConnectivityFileName(NULL);
  }
  if(this->ConnectivityFile == NULL)
  {
    this->ConnectivityFile = new NcFile(this->ConnectivityFileName,
                                        NcFile::ReadOnly);
    if(this->ConnectivityFile->is_valid() == 0)
    {
      vtkErrorMacro(<< "Can't read file " << this->ConnectivityFileName);
      delete this->ConnectivityFile;
      this->ConnectivityFile = NULL;
      return 0;
    }
    this->SetCurrentConnectivityFileName(this->ConnectivityFileName);
  }

  // Set the NetCDF error handler to not kill the application.
  // Upon exiting this method the error handler will be restored
  // to its previous state.
  NcError ncError(NcError::verbose_nonfatal);

  // read in the points first
  NcDim* levelsDimension = this->PointsFile->get_dim("lev");
  if(levelsDimension == NULL)
  {
    vtkErrorMacro("Cannot find the number of levels (lev dimension).");
    return 0;
  }
  long numCellLevels = levelsDimension->size() - 1;
  NcVar* levelsVar = this->PointsFile->get_var("lev");
  if(levelsVar == NULL)
  {
    vtkErrorMacro("Cannot find the number of levels (lev variable).");
    return 0;
  }
  if(levelsVar->num_dims() != 1 ||
     levelsVar->get_dim(0)->size() != numCellLevels+1)
  {
    vtkErrorMacro("The lev variable is not consistent.");
    return 0;
  }
  if(this->SingleLevel != 0)
  {
    numCellLevels = 1;
  }
  NcDim* dimension = this->PointsFile->get_dim("ncol");
  if(dimension == NULL)
  {
    vtkErrorMacro("Cannot find the number of points (ncol dimension).");
    return 0;
  }
  NcVar* lon = this->PointsFile->get_var("lon");
  NcVar* lat = this->PointsFile->get_var("lat");
  vtkSmartPointer<vtkPoints> points = vtkSmartPointer<vtkPoints>::New();
  output->SetPoints(points);

  long numFilePoints = dimension->size();
  if(lat == NULL || lon == NULL)
  {
    vtkErrorMacro("Cannot find coordinates (lat or lon variable).");
    return 0;
  }
  if(lat->type() == ncDouble)
  {
    points->SetDataTypeToDouble();
    points->SetNumberOfPoints(numFilePoints);
    std::vector<double> array(numFilePoints*2);
    if(!lon->get(&array[0], numFilePoints))
    {
      return 0;
    }
    if(!lat->get(&array[numFilePoints], numFilePoints))
    {
      return 0;
    }
    for(long i=0;i<numFilePoints;i++)
    {
      points->SetPoint(i, array[i], array[i+numFilePoints], numCellLevels+1);
    }
  }
  else
  {
    points->SetDataTypeToFloat();
    points->SetNumberOfPoints(numFilePoints);
    std::vector<float> array(numFilePoints*2);
    if(!lon->get(&array[0], numFilePoints))
    {
      return 0;
    }
    if(!lat->get(&array[numFilePoints], numFilePoints))
    {
      return 0;
    }
    for(long i=0;i<numFilePoints;i++)
    {
      points->SetPoint(i, array[i], array[i+numFilePoints], numCellLevels+1);
    }
  }
  this->SetProgress(.25);  // educated guess for progress

  // now read in the cell connectivity.  note that this is a periodic
  // domain and only the points on the left boundary are included in
  // the points file.  if a cell uses a point that is on the left
  // boundary and it should be on the right boundary we will have
  // to create that point.  That's what boundaryPoints is used for.
  // The (index + numFilePoints) gives us the new point id, and the value
  // for that in this array will correspond to the original point id that the
  // boundaryPoint is duplicate of.
  std::vector<vtkIdType> boundaryPoints;

  // To avoid creating multiple duplicates, we we a
  // vtkIncrementalOctreePointLocator.
  vtkSmartPointer<vtkIncrementalOctreePointLocator> locator =
    vtkSmartPointer<vtkIncrementalOctreePointLocator>::New();
  locator->SetDataSet(output); // dataset only has points right now.
  locator->BuildLocator();

  dimension = this->ConnectivityFile->get_dim("ncells");
  if(dimension == NULL)
  {
    vtkErrorMacro("Cannot find the number of cells (ncells dimension).");
    return 0;
  }
  NcVar* connectivity =
    this->ConnectivityFile->get_var("element_corners");
  if(connectivity == NULL)
  {
    vtkErrorMacro("Cannot find cell connectivity (element_corners dimension).");
    return 0;
  }
  long numCellsPerLevel = dimension->size();


  int piece = outInfo->Get(vtkStreamingDemandDrivenPipeline::UPDATE_PIECE_NUMBER());
  int numPieces = outInfo->Get(vtkStreamingDemandDrivenPipeline::UPDATE_NUMBER_OF_PIECES());
  int beginCellLevel, endCellLevel, beginCell, endCell;
  this->GetPartitioning(piece, numPieces, numCellLevels, numCellsPerLevel,
                        beginCellLevel, endCellLevel, beginCell, endCell);
  // the cells/levels assigned to this piece
  long numLocalCells = endCell-beginCell;
  int numLocalCellLevels = endCellLevel-beginCellLevel;
  std::vector<int> cellConnectivity(4*numLocalCells);
  connectivity->set_cur(0, beginCell);
  connectivity->get(&(cellConnectivity[0]), 4, numLocalCells);

  for(long i=0;i<numLocalCells;i++)
  {
    vtkIdType pointIds[4];
    double coords[4][3]; // assume quads here
    for(int j=0;j<4;j++)
    {
      pointIds[j] = cellConnectivity[i+j*numLocalCells]-1;
      points->GetPoint(pointIds[j], coords[j]);
    }
    if (IsCellInverted(coords) == true)
    {
      // First decide whether we're putting this cell on the 360 side (right) or on the
      // 0 side (left). We decide this based on which side will have the
      // smallest protrusion.
      double delta = 0.0;
      bool anchorLeft = false;
      for (int j=0; j < 4; ++j)
      {
        // We're assured that coords[j][0] is in the range [0, 360].
        // We just that fact to avoid having to do a std::abs() here.
        double rightDelta = (360.0 - coords[j][0]);
        double leftDelta = coords[j][0]; // i.e. (coords[j][0] - 0.0).
        if (IsZero(rightDelta) || IsZero(leftDelta) || rightDelta == leftDelta)
        {
          // if the point is equidistant from both ends or is one of the ends,
          // we let the other points in this cell dictate where the cell should
          // anchor since this point can easily be anchored on either side with
          // no side effects.
          continue;
        }
        if (rightDelta < leftDelta)
        {
          if (rightDelta > delta)
          {
            delta = rightDelta;
            anchorLeft = false;
          }
        }
        else
        {
          if (leftDelta > delta)
          {
            delta = leftDelta;
            anchorLeft = true;
          }
        }
      }
      // Once we've decided where we're anchoring we adjust the points.
      for (int j=0; j < 4; ++j)
      {
        if (anchorLeft)
        {
          // if coords[j] is closer to right (360), move it to the left.
          if ( (360.0 - coords[j][0]) < coords[j][0] )
          {
            coords[j][0] -= 360.0;
          }
          else
          {
            continue;
          }
        }
        else
        {
          // if coords[j] is closer to left (0), move it to the right
          if ( coords[j][0] < (360.0 - coords[j][0]) )
          {
            coords[j][0] += 360.0;
          }
          else
          {
            continue;
          }
        }
        // Okay, we have moved the coords. Update the boundaryPoints so which
        // original point id is this new point id a clone of.
        vtkIdType newPtId;
        if (locator->InsertUniquePoint(coords[j], newPtId) == 1)
        {
          // if a new point was indeed inserted, we need to update the
          // boundaryPoints to keep track of it.
          assert(newPtId >= numFilePoints && pointIds[j] < newPtId);
          assert(static_cast<vtkIdType>(boundaryPoints.size()) == (newPtId-numFilePoints));
          boundaryPoints.push_back(pointIds[j]);
        }
        cellConnectivity[i+j*numLocalCells] = (newPtId + 1); // note: 1-indexed.
      }
    }
  }
  locator = NULL; // release the locator memory.

  // we now have all of the points at a single level.  build them up
  // for the rest of the levels before creating the cells.
  vtkIdType numPointsPerLevel = points->GetNumberOfPoints();
  if(!this->SingleLevel)
  {
    // a hacky way to resize the points array without resetting the data
    points->InsertPoint(numPointsPerLevel*(numLocalCellLevels+1)-1, 0, 0, 0);
    for(vtkIdType pt=0;pt<numPointsPerLevel;pt++)
    {
      double point[3];
      points->GetPoint(pt, point);
      // need to start at 0 here since for multiple process the first
      // level will need to be replaced
      for(long lev=0;lev<numLocalCellLevels+1;lev++)
      {
        point[2] = numCellLevels - lev - beginCellLevel;
        points->SetPoint(pt+lev*numPointsPerLevel, point);
      }
    }
  }

  points->Modified();
  points->Squeeze();

  this->SetProgress(.5);  // educated guess for progress

  // Collect the time step requested
  vtkInformationDoubleKey* timeKey =
    static_cast<vtkInformationDoubleKey*>
    (vtkStreamingDemandDrivenPipeline::UPDATE_TIME_STEP());

  double dTime = 0.0;
  if (outInfo->Has(timeKey))
  {
    dTime = outInfo->Get(timeKey);
  }

  // Actual time for the time step
  output->GetInformation()->Set(vtkDataObject::DATA_TIME_STEP(), dTime);

  // Index of the time step to request
  int timeStep = 0;
  while (timeStep < this->NumberOfTimeSteps &&
         this->TimeSteps[timeStep] < dTime)
  {
    timeStep++;
  }

  // now that we have the full set of points, read in any point
  // data with dimensions (time, lev, ncol) but read them in
  // by chunks of ncol since it will be a pretty big chunk of
  // memory that we'll have to break up anyways.
  for(int i=0;i<this->PointsFile->num_vars();i++)
  {
    NcVar* variable = this->PointsFile->get_var(i);
    if(this->SingleLevel == 0 && (variable->num_dims() != 3 ||
                                  strcmp(variable->get_dim(0)->name(), "time") != 0 ||
                                  strcmp(variable->get_dim(1)->name(), "lev") != 0 ||
                                  strcmp(variable->get_dim(2)->name(), "ncol") != 0) )
    { // not a 3D field variable
      continue;
    }
    else if(this->SingleLevel == 1 && ((variable->num_dims() != 2 ||
                                        strcmp(variable->get_dim(0)->name(), "time") != 0 ||
                                        strcmp(variable->get_dim(1)->name(), "ncol") != 0) ) )
    { // not a 2D field variable
      continue;
    }

    vtkDoubleArray* doubleArray = NULL;
    vtkFloatArray* floatArray = NULL;
    if(variable->type() == ncDouble)
    {
      doubleArray = vtkDoubleArray::New();
      doubleArray->SetNumberOfTuples(points->GetNumberOfPoints());
      doubleArray->SetName(variable->name());
      output->GetPointData()->AddArray(doubleArray);
      doubleArray->Delete();
    }
    else
    {
      floatArray = vtkFloatArray::New();
      floatArray->SetNumberOfTuples(points->GetNumberOfPoints());
      floatArray->SetName(variable->name());
      output->GetPointData()->AddArray(floatArray);
      floatArray->Delete();
    }
    if(this->SingleLevel == 0)
    {
      for(long lev=0;lev<numLocalCellLevels+1;lev++)
      {
        variable->set_cur(timeStep, lev+beginCellLevel, 0);
        if(doubleArray)
        {
          if(!variable->get(doubleArray->GetPointer(0)+lev*numPointsPerLevel,
                            1, 1, numFilePoints))
          {
            vtkErrorMacro("Problem getting NetCDF variable " << variable->name());
            return 0;
          }
        }
        else
        {
          if(!variable->get(floatArray->GetPointer(0)+lev*numPointsPerLevel,
                            1, 1, numFilePoints))
          {
            vtkErrorMacro("Problem getting NetCDF variable " << variable->name());
            return 0;
          }
        }
      }
    }
    else if(this->SingleLevel == 1)
    {
      variable->set_cur(timeStep, 0);
      if(doubleArray)
      {
        if(!variable->get(doubleArray->GetPointer(0), 1, numFilePoints))
        {
          vtkErrorMacro("Problem getting NetCDF variable " << variable->name());
          return 0;
        }
      }
      else
      {
        if(!variable->get(floatArray->GetPointer(0), 1, numFilePoints))
        {
          vtkErrorMacro("Problem getting NetCDF variable " << variable->name());
          return 0;
        }
      }
    }
  }

  // we have to copy the values from the left side to the right side
  vtkPointData* pointData = output->GetPointData();
  pointData->CopyAllOn();
  pointData->CopyAllocate(output->GetPointData(),
                          output->GetNumberOfPoints());

  vtkIdType newPtId=0;
  for (std::vector<vtkIdType>::const_iterator it=
        boundaryPoints.begin(); it!=boundaryPoints.end(); ++it, ++newPtId)
  {
    for(long lev=0;lev<numLocalCellLevels+1-this->SingleLevel;lev++)
    {
      vtkIdType srcId = (*it) + lev * numPointsPerLevel;
      vtkIdType destId = (newPtId + numFilePoints) + lev * numPointsPerLevel;
      pointData->CopyData(pointData, srcId, destId);
    }
  }

  // add in level data for each plane which corresponds to an average pressure
  // if we are loading a volumetric grid
  if(this->SingleLevel == 0)
  {
    std::vector<float> levelData(numLocalCellLevels+1);
    levelsVar->set_cur(beginCellLevel);
    levelsVar->get(&levelData[0], numLocalCellLevels+1);
    vtkNew<vtkFloatArray> levelPointData;
    levelPointData->SetName(levelsVar->name());
    levelPointData->SetNumberOfTuples(points->GetNumberOfPoints());
    for(long j=0;j<numLocalCellLevels+1;j++)
    {
      for(vtkIdType i=0;i<numPointsPerLevel;i++)
      {
        levelPointData->SetValue(j*numPointsPerLevel+i, levelData[j]);
      }
    }
    output->GetPointData()->AddArray(levelPointData.GetPointer());
  }

  this->SetProgress(.75);  // educated guess for progress

  // now we actually create the cells
  if(this->SingleLevel == 1)
  {
    output->Allocate(numLocalCells);
  }
  else
  {
    output->Allocate(numLocalCells*numLocalCellLevels);
  }
  for(long i=0;i<numLocalCells;i++)
  {
    vtkIdType pointIds[4];
    for(int j=0;j<4;j++)
    {
      pointIds[j] = cellConnectivity[i+j*numLocalCells]-1;
    }
    if(this->SingleLevel == 0)
    { // volumetric grid
      for(int lev=0;lev<numLocalCellLevels;lev++)
      {
        vtkIdType hexIds[8];
        for(int j=0;j<4;j++)
        {
          hexIds[j] = pointIds[j]+lev*numPointsPerLevel;
          hexIds[j+4] = pointIds[j]+(1+lev)*numPointsPerLevel;
        }
        output->InsertNextCell(VTK_HEXAHEDRON, 8, hexIds);
      }
    }
    else if(this->SingleLevel == 1)
    { // surface grid
      output->InsertNextCell(VTK_QUAD, 4, pointIds);
    }
  }

  if(numLocalCells != numCellsPerLevel)
  {
    // we have extra points that are not connected to any cells
    //vtkNew<vtkCleanUnstructuredGrid> cleanGrid;
    //cleanGrid->SetInput(output);
  }

  vtkDebugMacro(<<"Read " << output->GetNumberOfPoints() <<" points,"
                << output->GetNumberOfCells() <<" cells.\n");

  return 1;
}

//----------------------------------------------------------------------------
bool vtkNetCDFCAMReader::GetPartitioning(
  int piece, int numPieces,int numLevels, int numCellsPerLevel,
  int & beginLevel, int & endLevel, int & beginCell, int & endCell)
{
  // probably not the best way to partition the data but should
  // be sufficient for development.
  if(numPieces <= 0 || piece < 0 || piece >= numPieces)
  {
    vtkErrorMacro("Bad piece information for partitioning.");
    return false;
  }
  if(numPieces == 1)
  {
    beginLevel = 0;
    endLevel = numLevels;
    beginCell = 0;
    endCell = numCellsPerLevel;
    return true;
  }
  if(numPieces <= numLevels)
  {
    beginLevel = piece*numLevels/numPieces;
    endLevel = (piece+1)*numLevels/numPieces;
    beginCell = 0;
    endCell = numCellsPerLevel;
    return true;
  }

  int levelsPerPiece = vtkMath::Ceil(numLevels/static_cast<double>(numPieces));
  int piecesPerLevel = vtkMath::Ceil(numPieces/static_cast<double>(numLevels));
  int numOverworkedPieces = piecesPerLevel/levelsPerPiece*numLevels - numPieces;
  bool evenOverworked = (piecesPerLevel % 2 == 0 || numOverworkedPieces == 0);
  if(piece < numOverworkedPieces)
  {
    if(evenOverworked)
    {
      beginLevel = 2*piece/piecesPerLevel;
      endLevel = beginLevel + 1;
      int remainder = piece % (piecesPerLevel/2);
      beginCell = remainder * numCellsPerLevel * 2 / piecesPerLevel;
      endCell = (remainder + 1)* numCellsPerLevel * 2 / piecesPerLevel;
    }
    else
    {
      beginLevel = 2*piece/(piecesPerLevel-1);
      endLevel = beginLevel + 1;
      int remainder = piece % ((piecesPerLevel-1)/2);
      beginCell = remainder * numCellsPerLevel * 2 / piecesPerLevel;
      endCell = (remainder + 1)* numCellsPerLevel * 2 / piecesPerLevel;
    }
  }
  else // underworked pieces
  {
    if( evenOverworked == false && piece - numOverworkedPieces < 2*numOverworkedPieces/(piecesPerLevel-1) )
    { // fillers for levels that also have overworked pieces working on them
      beginLevel = piece - numOverworkedPieces;
      beginCell = numCellsPerLevel*(piecesPerLevel-1)/piecesPerLevel;
      endCell = numCellsPerLevel;
    }
    else
    {
      int fakePiece = numOverworkedPieces+piece; // take into account overworked pieces
      beginLevel = fakePiece / piecesPerLevel;
      int remainder = fakePiece % piecesPerLevel;
      beginCell = remainder * numCellsPerLevel / piecesPerLevel;
      endCell = (remainder + 1)*numCellsPerLevel / piecesPerLevel;
    }
    endLevel = beginLevel + 1;
  }

  return true;
}

//----------------------------------------------------------------------------
#if !defined(VTK_LEGACY_REMOVE)
void vtkNetCDFCAMReader::SetCellLayerRight(int)
{
  VTK_LEGACY_BODY(vtkNetCDFCAMReader::SetCellLayerRight, "VTK 6.3");
}
#endif

//----------------------------------------------------------------------------
#if !defined(VTK_LEGACY_REMOVE)
int vtkNetCDFCAMReader::GetCellLayerRight()
{
  VTK_LEGACY_BODY(vtkNetCDFCAMReader::GetCellLayerRight, "VTK 6.3");
  return 0;
}
#endif

//----------------------------------------------------------------------------
void vtkNetCDFCAMReader::PrintSelf(ostream& os, vtkIndent indent)
{
  this->Superclass::PrintSelf(os,indent);
  os << indent << "FileName: "
     << (this->FileName ? this->FileName : "(NULL)") << endl;
  os << indent << "ConnectivityFileName: " <<
    (this->ConnectivityFileName ? this->ConnectivityFileName : "(NULL)")
     << endl;
  os << indent << "SingleLevel: " << this->SingleLevel << endl;
  if(this->PointsFile)
  {
    os << indent << "PointsFile: " << this->PointsFile << endl;
  }
  else
  {
    os << indent << "PointsFile: (NULL)" << endl;
  }
  if(this->ConnectivityFile)
  {
    os << indent << "ConnectivityFile: " << this->ConnectivityFile << endl;
  }
  else
  {
    os << indent << "ConnectivityFile: (NULL)" << endl;
  }
}