1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
|
// -*- c++ -*-
/*=========================================================================
Program: Visualization Toolkit
Module: vtkPSLACReader.cxx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
/*-------------------------------------------------------------------------
Copyright 2008 Sandia Corporation.
Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
the U.S. Government retains certain rights in this software.
-------------------------------------------------------------------------*/
#include "vtkPSLACReader.h"
#include "vtkCellArray.h"
#include "vtkCompositeDataIterator.h"
#include "vtkDummyController.h"
#include "vtkIdTypeArray.h"
#include "vtkInformation.h"
#include "vtkInformationVector.h"
#include "vtkMultiBlockDataSet.h"
#include "vtkMultiProcessController.h"
#include "vtkMultiProcessStream.h"
#include "vtkObjectFactory.h"
#include "vtkPointData.h"
#include "vtkSortDataArray.h"
#include "vtkStreamingDemandDrivenPipeline.h"
#include "vtkUnstructuredGrid.h"
#include "vtkDoubleArray.h"
#include "vtkMath.h"
#include "vtkSmartPointer.h"
#define VTK_CREATE(type, name) \
vtkSmartPointer<type> name = vtkSmartPointer<type>::New()
#include "vtk_netcdf.h"
#include <vtksys/hash_map.hxx>
//=============================================================================
#define CALL_NETCDF(call) \
{ \
int errorcode = call; \
if (errorcode != NC_NOERR) \
{ \
vtkErrorMacro(<< "netCDF Error: " << nc_strerror(errorcode)); \
return 0; \
} \
}
#define WRAP_NETCDF(call) \
{ \
int errorcode = call; \
if (errorcode != NC_NOERR) return errorcode; \
}
#ifdef VTK_USE_64BIT_IDS
//#ifdef NC_INT64
//// This may or may not work with the netCDF 4 library reading in netCDF 3 files.
//#define nc_get_vars_vtkIdType nc_get_vars_longlong
//#else // NC_INT64
static int nc_get_vars_vtkIdType(int ncid, int varid,
const size_t start[], const size_t count[],
const ptrdiff_t stride[],
vtkIdType *ip)
{
// Step 1, figure out how many entries in the given variable.
int numdims;
WRAP_NETCDF(nc_inq_varndims(ncid, varid, &numdims));
vtkIdType numValues = 1;
for (int dim = 0; dim < numdims; dim++)
{
numValues *= count[dim];
}
// Step 2, read the data in as 32 bit integers. Recast the input buffer
// so we do not have to create a new one.
long *smallIp = reinterpret_cast<long*>(ip);
WRAP_NETCDF(nc_get_vars_long(ncid, varid, start, count, stride, smallIp));
// Step 3, recast the data from 32 bit integers to 64 bit integers. Since we
// are storing both in the same buffer, we need to be careful to not overwrite
// uncopied 32 bit numbers with 64 bit numbers. We can do that by copying
// backwards.
for (vtkIdType i = numValues-1; i >= 0; i--)
{
ip[i] = static_cast<vtkIdType>(smallIp[i]);
}
return NC_NOERR;
}
//#endif // NC_INT64
#else // VTK_USE_64_BIT_IDS
#define nc_get_vars_vtkIdType nc_get_vars_int
#endif // VTK_USE_64BIT_IDS
//=============================================================================
static int NetCDFTypeToVTKType(nc_type type)
{
switch (type)
{
case NC_BYTE: return VTK_UNSIGNED_CHAR;
case NC_CHAR: return VTK_CHAR;
case NC_SHORT: return VTK_SHORT;
case NC_INT: return VTK_INT;
case NC_FLOAT: return VTK_FLOAT;
case NC_DOUBLE: return VTK_DOUBLE;
default:
vtkGenericWarningMacro(<< "Unknown netCDF variable type "
<< type);
return -1;
}
}
//=============================================================================
// In this version, indexMap points from outArray to inArray. All the values
// of outArray get filled.
template<class T>
void vtkPSLACReaderMapValues1(const T *inArray, T *outArray, int numComponents,
vtkIdTypeArray *indexMap, vtkIdType offset=0)
{
vtkIdType numVals = indexMap->GetNumberOfTuples();
for (vtkIdType i = 0; i < numVals; i++)
{
vtkIdType j = indexMap->GetValue(i) - offset;
for (int c = 0; c < numComponents; c++)
{
outArray[numComponents*i+c] = inArray[numComponents*j+c];
}
}
}
// // In this version, indexMap points from inArray to outArray. All the values
// // of inArray get copied.
// template<class T>
// void vtkPSLACReaderMapValues2(const T *inArray, T *outArray, int numComponents,
// vtkIdTypeArray *indexMap)
// {
// vtkIdType numVals = indexMap->GetNumberOfTuples();
// for (vtkIdType i = 0; i < numVals; i++)
// {
// vtkIdType j = indexMap->GetValue(i);
// for (int c = 0; c < numComponents; c++)
// {
// outArray[numComponents*j+c] = inArray[numComponents*i+c];
// }
// }
// }
//=============================================================================
// Make sure that each process has the same number of blocks in the same
// position. Assumes that all blocks are unstructured grids.
static void SynchronizeBlocks(vtkMultiBlockDataSet *blocks,
vtkMultiProcessController *controller,
vtkInformationIntegerKey *typeKey)
{
unsigned long localNumBlocks = blocks->GetNumberOfBlocks();
unsigned long numBlocks;
controller->AllReduce(&localNumBlocks, &numBlocks, 1,
vtkCommunicator::MAX_OP);
if (blocks->GetNumberOfBlocks() < numBlocks)
{
blocks->SetNumberOfBlocks(numBlocks);
}
for (unsigned int blockId = 0; blockId < numBlocks; blockId++)
{
vtkDataObject *object = blocks->GetBlock(blockId);
if (object && !object->IsA("vtkUnstructuredGrid"))
{
vtkGenericWarningMacro(<< "Sanity error: found a block that is not an unstructured grid.");
}
int localBlockExists = (object != NULL);
int globalBlockExists = 0;
controller->AllReduce(&localBlockExists, &globalBlockExists, 1,
vtkCommunicator::LOGICAL_OR_OP);
if (!localBlockExists && globalBlockExists)
{
VTK_CREATE(vtkUnstructuredGrid, grid);
blocks->SetBlock(blockId, grid);
blocks->GetMetaData(blockId)->Set(typeKey, 1);
}
}
}
//=============================================================================
// Structures used by ReadMidpointCoordinates to store and transfer midpoint
// information.
namespace vtkPSLACReaderTypes
{
struct EdgeEndpointsHash {
public:
size_t operator()(const vtkSLACReader::EdgeEndpoints &edge) const {
return static_cast<size_t>(edge.GetMinEndPoint() + edge.GetMaxEndPoint());
}
};
typedef struct {
double coord[3];
} midpointPositionType;
const vtkIdType midpointPositionSize
= sizeof(midpointPositionType)/sizeof(double);
typedef struct {
vtkIdType minEdgePoint;
vtkIdType maxEdgePoint;
vtkIdType globalId;
} midpointTopologyType;
const vtkIdType midpointTopologySize
= sizeof(midpointTopologyType)/sizeof(vtkIdType);
typedef struct {
std::vector<midpointPositionType> position;
std::vector<midpointTopologyType> topology;
} midpointListsType;
typedef struct {
midpointPositionType *position;
midpointTopologyType *topology;
} midpointPointersType;
typedef vtksys::hash_map<vtkSLACReader::EdgeEndpoints,
midpointPointersType,
EdgeEndpointsHash> MidpointsAvailableType;
//-----------------------------------------------------------------------------
// Convenience function for gathering midpoint information to a process.
static void GatherMidpoints(vtkMultiProcessController *controller,
const midpointListsType &sendMidpoints,
midpointListsType &recvMidpoints,
int process)
{
vtkIdType sendLength = sendMidpoints.position.size();
if (sendLength != static_cast<vtkIdType>(sendMidpoints.topology.size()))
{
vtkGenericWarningMacro(<< "Bad midpoint array structure.");
return;
}
vtkIdType numProcesses = controller->GetNumberOfProcesses();
// Gather the amount of data each process is going to send.
std::vector<vtkIdType> receiveCounts(numProcesses);
controller->Gather(&sendLength, &receiveCounts.at(0), 1, process);
// Get ready the arrays for the receiver that determine how much data
// to get and where to put it.
std::vector<vtkIdType> positionLengths(numProcesses);
std::vector<vtkIdType> positionOffsets(numProcesses);
std::vector<vtkIdType> topologyLengths(numProcesses);
std::vector<vtkIdType> topologyOffsets(numProcesses);
const double *sendPositionBuffer
= ( (sendLength > 0)
? reinterpret_cast<const double *>(&sendMidpoints.position.at(0))
: NULL);
const vtkIdType *sendTopologyBuffer
= ( (sendLength > 0)
? reinterpret_cast<const vtkIdType *>(&sendMidpoints.topology.at(0))
: NULL);
double *recvPositionBuffer;
vtkIdType *recvTopologyBuffer;
if (process == controller->GetLocalProcessId())
{
vtkIdType numEntries = 0;
for (int i = 0; i < numProcesses; i++)
{
positionLengths[i] = midpointPositionSize*receiveCounts[i];
positionOffsets[i] = midpointPositionSize*numEntries;
topologyLengths[i] = midpointTopologySize*receiveCounts[i];
topologyOffsets[i] = midpointTopologySize*numEntries;
numEntries += receiveCounts[i];
}
recvMidpoints.position.resize(numEntries);
recvMidpoints.topology.resize(numEntries);
recvPositionBuffer
= ( (numEntries > 0)
? reinterpret_cast<double *>(&recvMidpoints.position.at(0))
: NULL);
recvTopologyBuffer
= ( (numEntries > 0)
? reinterpret_cast<vtkIdType *>(&recvMidpoints.topology.at(0))
: NULL);
}
else
{
recvPositionBuffer = NULL;
recvTopologyBuffer = NULL;
}
// Gather the actual data.
controller->GatherV(sendPositionBuffer, recvPositionBuffer,
midpointPositionSize*sendLength,
&positionLengths.at(0), &positionOffsets.at(0),
process);
controller->GatherV(sendTopologyBuffer, recvTopologyBuffer,
midpointTopologySize*sendLength,
&topologyLengths.at(0), &topologyOffsets.at(0),
process);
}
};
using namespace vtkPSLACReaderTypes;
//-----------------------------------------------------------------------------
// Simple hash function for vtkIdType.
struct vtkPSLACReaderIdTypeHash {
size_t operator()(vtkIdType val) const { return static_cast<size_t>(val); }
};
//=============================================================================
vtkStandardNewMacro(vtkPSLACReader);
vtkCxxSetObjectMacro(vtkPSLACReader, Controller, vtkMultiProcessController);
//-----------------------------------------------------------------------------
class vtkPSLACReader::vtkInternal
{
public:
typedef vtksys::hash_map<vtkIdType, vtkIdType, vtkPSLACReaderIdTypeHash>
GlobalToLocalIdType;
GlobalToLocalIdType GlobalToLocalIds;
// Description:
// A map from local point ids to global ids. Can also be used as the
// global point ids.
vtkSmartPointer<vtkIdTypeArray> LocalToGlobalIds;
// Description:
// The point data we expect to receive from each process.
vtkSmartPointer<vtkIdTypeArray> PointsExpectedFromProcessesLengths;
vtkSmartPointer<vtkIdTypeArray> PointsExpectedFromProcessesOffsets;
// Description:
// The point data we have to send to each process. Stored as global ids.
vtkSmartPointer<vtkIdTypeArray> PointsToSendToProcesses;
vtkSmartPointer<vtkIdTypeArray> PointsToSendToProcessesLengths;
vtkSmartPointer<vtkIdTypeArray> PointsToSendToProcessesOffsets;
// Description:
// The edge data we expect to receive from each process.
vtkSmartPointer<vtkIdTypeArray> EdgesExpectedFromProcessesCounts;
// Description:
// The edge data we have to send to each process. Stored as global ids.
vtkSmartPointer<vtkIdTypeArray> EdgesToSendToProcesses;
vtkSmartPointer<vtkIdTypeArray> EdgesToSendToProcessesLengths;
vtkSmartPointer<vtkIdTypeArray> EdgesToSendToProcessesOffsets;
};
//-----------------------------------------------------------------------------
vtkPSLACReader::vtkPSLACReader()
{
this->Controller = NULL;
this->SetController(vtkMultiProcessController::GetGlobalController());
if (!this->Controller)
{
this->SetController(vtkSmartPointer<vtkDummyController>::New());
}
this->NumberOfPiecesCache = 0;
this->RequestedPieceCache = -1;
this->Internal = new vtkPSLACReader::vtkInternal;
}
vtkPSLACReader::~vtkPSLACReader()
{
this->SetController(NULL);
delete this->Internal;
}
void vtkPSLACReader::PrintSelf(ostream &os, vtkIndent indent)
{
this->Superclass::PrintSelf(os, indent);
if (this->Controller)
{
os << indent << "Controller: " << this->Controller << endl;
}
else
{
os << indent << "Controller: (null)\n";
}
}
//-----------------------------------------------------------------------------
int vtkPSLACReader::RequestInformation(vtkInformation *request,
vtkInformationVector **inputVector,
vtkInformationVector *outputVector)
{
// It would be more efficient to read the meta data on just process 0 and
// propgate to the rest. However, this will probably have a profound effect
// only on big jobs accessing parallel file systems. Until we need that,
// I'm not going to bother.
if (!this->Superclass::RequestInformation(request, inputVector, outputVector))
{
return 0;
}
if (!this->Controller)
{
vtkErrorMacro(<< "I need a Controller to read the data.");
return 0;
}
for (int i = 0; i < vtkPSLACReader::NUM_OUTPUTS; i++)
{
vtkInformation *outInfo = outputVector->GetInformationObject(i);
outInfo->Set(CAN_HANDLE_PIECE_REQUEST(),
1);
}
return 1;
}
//-----------------------------------------------------------------------------
int vtkPSLACReader::RequestData(vtkInformation *request,
vtkInformationVector **inputVector,
vtkInformationVector *outputVector)
{
// Check to make sure the pieces match the processes.
this->RequestedPiece = 0;
this->NumberOfPieces = 1;
for (int i = 0; i < vtkSLACReader::NUM_OUTPUTS; i++)
{
vtkInformation *outInfo = outputVector->GetInformationObject(i);
if ( outInfo->Has(vtkStreamingDemandDrivenPipeline::UPDATE_PIECE_NUMBER())
&& outInfo->Has(
vtkStreamingDemandDrivenPipeline::UPDATE_NUMBER_OF_PIECES()) )
{
this->RequestedPiece = outInfo->Get(
vtkStreamingDemandDrivenPipeline::UPDATE_PIECE_NUMBER());
this->NumberOfPieces = outInfo->Get(
vtkStreamingDemandDrivenPipeline::UPDATE_NUMBER_OF_PIECES());
if ( (this->RequestedPiece == this->Controller->GetLocalProcessId())
&& (this->NumberOfPieces == this->Controller->GetNumberOfProcesses()))
{
break;
}
}
}
if ( (this->RequestedPiece != this->Controller->GetLocalProcessId())
|| (this->NumberOfPieces != this->Controller->GetNumberOfProcesses()) )
{
vtkErrorMacro(<< "Process numbers do not match piece numbers.");
return 0;
}
// RequestData will call other methods that we have overloaded to read
// partitioned pieces.
int retval =this->Superclass::RequestData(request, inputVector, outputVector);
return retval;
}
//-----------------------------------------------------------------------------
int vtkPSLACReader::ReadTetrahedronInteriorArray(int meshFD,
vtkIdTypeArray *connectivity)
{
int tetInteriorVarId;
CALL_NETCDF(nc_inq_varid(meshFD, "tetrahedron_interior", &tetInteriorVarId));
vtkIdType numTets
= this->GetNumTuplesInVariable(meshFD, tetInteriorVarId, NumPerTetInt);
vtkIdType numTetsPerPiece = numTets/this->NumberOfPieces + 1;
vtkIdType startTet = this->RequestedPiece*numTetsPerPiece;
vtkIdType endTet = startTet + numTetsPerPiece;
if (endTet > numTets) endTet = numTets;
size_t start[2];
size_t count[2];
start[0] = startTet; count[0] = endTet - startTet;
start[1] = 0; count[1] = NumPerTetInt;
connectivity->Initialize();
connectivity->SetNumberOfComponents(static_cast<int>(count[1]));
connectivity->SetNumberOfTuples(static_cast<vtkIdType>(count[0]));
CALL_NETCDF(nc_get_vars_vtkIdType(meshFD, tetInteriorVarId,
start, count, NULL,
connectivity->GetPointer(0)));
return 1;
}
//-----------------------------------------------------------------------------
int vtkPSLACReader::ReadTetrahedronExteriorArray(int meshFD,
vtkIdTypeArray *connectivity)
{
int tetExteriorVarId;
CALL_NETCDF(nc_inq_varid(meshFD, "tetrahedron_exterior", &tetExteriorVarId));
vtkIdType numTets
= this->GetNumTuplesInVariable(meshFD, tetExteriorVarId, NumPerTetExt);
vtkIdType numTetsPerPiece = numTets/this->NumberOfPieces + 1;
vtkIdType startTet = this->RequestedPiece*numTetsPerPiece;
vtkIdType endTet = startTet + numTetsPerPiece;
if (endTet > numTets) endTet = numTets;
size_t start[2];
size_t count[2];
start[0] = startTet; count[0] = endTet - startTet;
start[1] = 0; count[1] = NumPerTetExt;
connectivity->Initialize();
connectivity->SetNumberOfComponents(static_cast<int>(count[1]));
connectivity->SetNumberOfTuples(static_cast<vtkIdType>(count[0]));
CALL_NETCDF(nc_get_vars_vtkIdType(meshFD, tetExteriorVarId,
start, count, NULL,
connectivity->GetPointer(0)));
return 1;
}
//-----------------------------------------------------------------------------
int vtkPSLACReader::CheckTetrahedraWinding(int meshFD)
{
// Check the file only on the first process and broadcast the result.
int winding;
if (this->Controller->GetLocalProcessId() == 0)
{
winding = this->Superclass::CheckTetrahedraWinding(meshFD);
}
this->Controller->Broadcast(&winding, 1, 0);
return winding;
}
//-----------------------------------------------------------------------------
int vtkPSLACReader::ReadConnectivity(int meshFD,
vtkMultiBlockDataSet *surfaceOutput,
vtkMultiBlockDataSet *volumeOutput)
{
//---------------------------------
// Call the superclass to read the arrays from disk and assemble the
// primitives. The superclass will call the ReadTetrahedron*Array methods,
// which we have overridden to read only a partition of the cells.
if (!this->Superclass::ReadConnectivity(meshFD, surfaceOutput, volumeOutput))
{
return 0;
}
//---------------------------------
// Right now, the output only has blocks that are defined by the local piece.
// However, downstream components will expect the multiblock structure to be
// uniform amongst all processes. Thus, we correct that problem here by
// adding empty blocks for those not in our local piece.
SynchronizeBlocks(surfaceOutput, this->Controller, IS_EXTERNAL_SURFACE());
SynchronizeBlocks(volumeOutput, this->Controller, IS_INTERNAL_VOLUME());
//---------------------------------
// This multiblock that contains both outputs provides an easy way to iterate
// over all cells in both output.
VTK_CREATE(vtkMultiBlockDataSet, compositeOutput);
compositeOutput->SetNumberOfBlocks(2);
compositeOutput->SetBlock(SURFACE_OUTPUT, surfaceOutput);
compositeOutput->SetBlock(VOLUME_OUTPUT, volumeOutput);
// ---------------------------------
// All the cells have "global" ids. That is, an index into a global list of
// all possible points. We don't want to have to read in all points in all
// processes, so here we are going to figure out what points we need to load
// locally, make maps between local and global ids, and convert the ids in the
// connectivity arrays from global ids to local ids.
this->Internal->LocalToGlobalIds = vtkSmartPointer<vtkIdTypeArray>::New();
this->Internal->LocalToGlobalIds->SetName("GlobalIds");
// Iterate over all points of all cells and mark what points we encounter
// in GlobalToLocalIds.
this->Internal->GlobalToLocalIds.clear();
vtkSmartPointer<vtkCompositeDataIterator> outputIter;
for (outputIter.TakeReference(compositeOutput->NewIterator());
!outputIter->IsDoneWithTraversal(); outputIter->GoToNextItem())
{
vtkUnstructuredGrid *ugrid = vtkUnstructuredGrid::SafeDownCast(
compositeOutput->GetDataSet(outputIter));
vtkCellArray *cells = ugrid->GetCells();
vtkIdType npts, *pts;
for (cells->InitTraversal(); cells->GetNextCell(npts, pts); )
{
for (vtkIdType i = 0; i < npts; i++)
{
// The following inserts an entry into the map if one does not exist.
// We will assign actual local ids later.
this->Internal->GlobalToLocalIds[pts[i]] = -1;
}
}
}
// If we are reading midpoints, record any edges that might require endpoints.
std::vector<vtkSLACReader::EdgeEndpoints> edgesNeeded;
if (this->ReadMidpoints)
{
for (outputIter.TakeReference(surfaceOutput->NewIterator());
!outputIter->IsDoneWithTraversal(); outputIter->GoToNextItem())
{
vtkUnstructuredGrid *ugrid = vtkUnstructuredGrid::SafeDownCast(
surfaceOutput->GetDataSet(outputIter));
vtkCellArray *cells = ugrid->GetCells();
vtkIdType npts, *pts;
for (cells->InitTraversal(); cells->GetNextCell(npts, pts); )
{
for (vtkIdType i = 0; i < npts; i++)
{
edgesNeeded.push_back(vtkSLACReader::EdgeEndpoints(pts[i],
pts[(i+1)%npts]));
}
}
}
}
// ---------------------------------
// Now that we know all the global ids we have, create a map from local
// to global ids. First we'll just copy the global ids into the array and
// then sort them. Sorting them will make the global ids monotonically
// increasing, which means that when we get data from another process we
// can just copy it into a block of memory. We are only calculating the
// local to global id map for now. We will fill the global to local id
// later when we iterate over the local ids.
this->Internal->LocalToGlobalIds->Allocate(
this->Internal->GlobalToLocalIds.size());
vtkInternal::GlobalToLocalIdType::iterator itr;
for (itr = this->Internal->GlobalToLocalIds.begin();
itr != this->Internal->GlobalToLocalIds.end(); itr++)
{
this->Internal->LocalToGlobalIds->InsertNextValue(itr->first);
}
vtkSortDataArray::Sort(this->Internal->LocalToGlobalIds);
// ---------------------------------
// Now that we have the local to global id maps, we can determine which
// process will send what point data where. This is also where we assign
// local ids to global ids (i.e. determine locally where we store each point).
this->Internal->PointsExpectedFromProcessesLengths = vtkSmartPointer<vtkIdTypeArray>::New();
this->Internal->PointsExpectedFromProcessesLengths->SetNumberOfTuples(this->NumberOfPieces);
this->Internal->PointsExpectedFromProcessesOffsets = vtkSmartPointer<vtkIdTypeArray>::New();
this->Internal->PointsExpectedFromProcessesOffsets->SetNumberOfTuples(this->NumberOfPieces);
this->Internal->PointsToSendToProcesses = vtkSmartPointer<vtkIdTypeArray>::New();
this->Internal->PointsToSendToProcessesLengths = vtkSmartPointer<vtkIdTypeArray>::New();
this->Internal->PointsToSendToProcessesLengths->SetNumberOfTuples(this->NumberOfPieces);
this->Internal->PointsToSendToProcessesOffsets = vtkSmartPointer<vtkIdTypeArray>::New();
this->Internal->PointsToSendToProcessesOffsets->SetNumberOfTuples(this->NumberOfPieces);
// Record how many global points there are.
int coordsVarId;
CALL_NETCDF(nc_inq_varid(meshFD, "coords", &coordsVarId));
this->NumberOfGlobalPoints
= this->GetNumTuplesInVariable(meshFD, coordsVarId, 3);
// Iterate over our LocalToGlobalIds map and determine which process reads
// which points. We also fill out GlobalToLocalIds. Until this point we
// only have keys and we need to set the values.
vtkIdType localId = 0;
vtkIdType numLocalIds = this->Internal->LocalToGlobalIds->GetNumberOfTuples();
for (int process = 0; process < this->NumberOfPieces; process++)
{
VTK_CREATE(vtkIdTypeArray, pointList);
pointList->Allocate(this->NumberOfGlobalPoints/this->NumberOfPieces,
this->NumberOfGlobalPoints/this->NumberOfPieces);
vtkIdType lastId = this->EndPointRead(process);
for ( ; (localId < numLocalIds); localId++)
{
vtkIdType globalId = this->Internal->LocalToGlobalIds->GetValue(localId);
if (globalId >= lastId) break;
this->Internal->GlobalToLocalIds[globalId] = localId;
pointList->InsertNextValue(globalId);
}
// pointList now has all the global ids for points that will be loaded by
// process. Send those ids to process so that it knows what data to send
// back when reading in point data.
vtkIdType numPoints = pointList->GetNumberOfTuples();
this->Internal->PointsExpectedFromProcessesLengths->SetValue(process, numPoints);
this->Controller->Gather(&numPoints,
this->Internal->PointsToSendToProcessesLengths->WritePointer(0,this->NumberOfPieces),
1, process);
vtkIdType offset = 0;
if (process == this->RequestedPiece)
{
for (int i = 0; i < this->NumberOfPieces; i++)
{
this->Internal->PointsToSendToProcessesOffsets->SetValue(i, offset);
offset += this->Internal->PointsToSendToProcessesLengths->GetValue(i);
}
this->Internal->PointsToSendToProcesses->SetNumberOfTuples(offset);
}
this->Controller->GatherV(
pointList->GetPointer(0),
this->Internal->PointsToSendToProcesses->WritePointer(0,offset),
numPoints,
this->Internal->PointsToSendToProcessesLengths->GetPointer(0),
this->Internal->PointsToSendToProcessesOffsets->GetPointer(0),
process);
}
// Calculate the offsets for the incoming point data into the local array.
vtkIdType offset = 0;
for (int process = 0; process < this->NumberOfPieces; process++)
{
this->Internal->PointsExpectedFromProcessesOffsets->SetValue(process,
offset);
offset
+= this->Internal->PointsExpectedFromProcessesLengths->GetValue(process);
}
// Now that we have a complete map from global to local ids, modify the
// connectivity arrays to use local ids instead of global ids.
for (outputIter.TakeReference(compositeOutput->NewIterator());
!outputIter->IsDoneWithTraversal(); outputIter->GoToNextItem())
{
vtkUnstructuredGrid *ugrid = vtkUnstructuredGrid::SafeDownCast(
compositeOutput->GetDataSet(outputIter));
vtkCellArray *cells = ugrid->GetCells();
vtkIdType npts, *pts;
for (cells->InitTraversal(); cells->GetNextCell(npts, pts); )
{
for (vtkIdType i = 0; i < npts; i++)
{
pts[i] = this->Internal->GlobalToLocalIds[pts[i]];
}
}
}
if (this->ReadMidpoints)
{
// Setup the Edge transfers
this->Internal->EdgesExpectedFromProcessesCounts = vtkSmartPointer<vtkIdTypeArray>::New();
this->Internal->EdgesExpectedFromProcessesCounts->SetNumberOfTuples(this->NumberOfPieces);
this->Internal->EdgesToSendToProcesses = vtkSmartPointer<vtkIdTypeArray>::New();
this->Internal->EdgesToSendToProcessesLengths = vtkSmartPointer<vtkIdTypeArray>::New();
this->Internal->EdgesToSendToProcessesLengths->SetNumberOfTuples(this->NumberOfPieces);
this->Internal->EdgesToSendToProcessesOffsets = vtkSmartPointer<vtkIdTypeArray>::New();
this->Internal->EdgesToSendToProcessesOffsets->SetNumberOfTuples(this->NumberOfPieces);
std::vector< vtkSmartPointer<vtkIdTypeArray> > edgeLists (this->NumberOfPieces);
for (int process = 0; process < this->NumberOfPieces; process ++)
{
edgeLists[process] = vtkSmartPointer<vtkIdTypeArray>::New ();
edgeLists[process]->SetNumberOfComponents (2);
}
int pointsPerProcess = this->NumberOfGlobalPoints/this->NumberOfPieces + 1;
for (size_t i = 0; i < edgesNeeded.size (); i ++)
{
int process = edgesNeeded[i].GetMinEndPoint() / pointsPerProcess;
vtkIdType ids[2];
ids[0] = edgesNeeded[i].GetMinEndPoint();
ids[1] = edgesNeeded[i].GetMaxEndPoint();
edgeLists[process]->InsertNextTypedTuple(static_cast<vtkIdType*>(ids));
}
for (int process = 0; process < this->NumberOfPieces; process ++)
{
vtkIdType numEdges = edgeLists[process]->GetNumberOfTuples();
this->Internal->EdgesExpectedFromProcessesCounts->SetValue(process,
numEdges);
this->Controller->Gather(&numEdges,
this->Internal->EdgesToSendToProcessesLengths->WritePointer(0,this->NumberOfPieces),
1, process);
offset = 0;
if (process == this->RequestedPiece)
{
for (int i = 0; i < this->NumberOfPieces; i++)
{
this->Internal->EdgesToSendToProcessesOffsets->SetValue(i, offset);
int len
= this->Internal->EdgesToSendToProcessesLengths->GetValue(i) * 2;
this->Internal->EdgesToSendToProcessesLengths->SetValue (i, len);
offset += len;
}
}
this->Internal->EdgesToSendToProcesses->SetNumberOfComponents (2);
this->Internal->EdgesToSendToProcesses->SetNumberOfTuples (offset/2);
this->Controller->GatherV(
edgeLists[process]->GetPointer(0),
this->Internal->EdgesToSendToProcesses->WritePointer(0,offset),
numEdges*2,
this->Internal->EdgesToSendToProcessesLengths->GetPointer(0),
this->Internal->EdgesToSendToProcessesOffsets->GetPointer(0),
process);
}
}
return 1;
}
//-----------------------------------------------------------------------------
int vtkPSLACReader::RestoreMeshCache(vtkMultiBlockDataSet *surfaceOutput,
vtkMultiBlockDataSet *volumeOutput,
vtkMultiBlockDataSet *compositeOutput)
{
if (!this->Superclass::RestoreMeshCache(surfaceOutput, volumeOutput,
compositeOutput)) return 0;
// Record the global ids in the point data.
vtkPointData *pd = vtkPointData::SafeDownCast(
compositeOutput->GetInformation()->Get(vtkSLACReader::POINT_DATA()));
pd->SetGlobalIds(this->Internal->LocalToGlobalIds);
pd->SetPedigreeIds(this->Internal->LocalToGlobalIds);
return 1;
}
//-----------------------------------------------------------------------------
vtkSmartPointer<vtkDataArray> vtkPSLACReader::ReadPointDataArray(int ncFD,
int varId)
{
// Get the dimension info. We should only need to worry about 1 or 2D arrays.
int numDims;
CALL_NETCDF(nc_inq_varndims(ncFD, varId, &numDims));
if (numDims > 2)
{
vtkErrorMacro(<< "Sanity check failed. "
<< "Encountered array with too many dimensions.");
return 0;
}
if (numDims < 1)
{
vtkErrorMacro(<< "Sanity check failed. "
<< "Encountered array with *no* dimensions.");
return 0;
}
int dimIds[2];
CALL_NETCDF(nc_inq_vardimid(ncFD, varId, dimIds));
size_t numCoords;
CALL_NETCDF(nc_inq_dimlen(ncFD, dimIds[0], &numCoords));
if (numCoords != static_cast<size_t>(this->NumberOfGlobalPoints))
{
vtkErrorMacro(<< "Encountered inconsistent number of coordinates.");
return 0;
}
size_t numComponents = 1;
if (numDims > 1)
{
CALL_NETCDF(nc_inq_dimlen(ncFD, dimIds[1], &numComponents));
}
// Allocate an array of the right type.
nc_type ncType;
CALL_NETCDF(nc_inq_vartype(ncFD, varId, &ncType));
int vtkType = NetCDFTypeToVTKType(ncType);
if (vtkType < 1) return 0;
vtkSmartPointer<vtkDataArray> dataArray;
dataArray.TakeReference(vtkDataArray::CreateDataArray(vtkType));
// Read the data from the file.
size_t start[2], count[2];
start[0] = this->StartPointRead(this->RequestedPiece);
count[0] = this->EndPointRead(this->RequestedPiece) - start[0];
start[1] = 0; count[1] = numComponents;
dataArray->SetNumberOfComponents(static_cast<int>(count[1]));
dataArray->SetNumberOfTuples(static_cast<vtkIdType>(count[0]));
CALL_NETCDF(nc_get_vars(ncFD, varId, start, count, NULL,
dataArray->GetVoidPointer(0)));
// We now need to redistribute the data. Allocate an array to store the final
// point data and a buffer to send data to the rest of the processes.
vtkSmartPointer<vtkDataArray> finalDataArray;
finalDataArray.TakeReference(vtkDataArray::CreateDataArray(vtkType));
finalDataArray->SetNumberOfComponents(static_cast<int>(numComponents));
finalDataArray->SetNumberOfTuples(
this->Internal->LocalToGlobalIds->GetNumberOfTuples());
vtkSmartPointer<vtkDataArray> sendBuffer;
sendBuffer.TakeReference(vtkDataArray::CreateDataArray(vtkType));
sendBuffer->SetNumberOfComponents(static_cast<int>(numComponents));
sendBuffer->SetNumberOfTuples(
this->Internal->PointsToSendToProcesses->GetNumberOfTuples());
switch (vtkType)
{
vtkTemplateMacro(vtkPSLACReaderMapValues1(
(VTK_TT*)dataArray->GetVoidPointer(0),
(VTK_TT*)sendBuffer->GetVoidPointer(0),
static_cast<int>(numComponents),
this->Internal->PointsToSendToProcesses,
this->StartPointRead(this->RequestedPiece)));
}
// Scatter expects identifiers per value, not per tuple. Thus, we (may)
// need to adjust the lengths and offsets of what we send.
VTK_CREATE(vtkIdTypeArray, sendLengths);
sendLengths->SetNumberOfTuples(this->NumberOfPieces);
VTK_CREATE(vtkIdTypeArray, sendOffsets);
sendOffsets->SetNumberOfTuples(this->NumberOfPieces);
for (int i = 0; i < this->NumberOfPieces; i++)
{
sendLengths->SetValue(i,
this->Internal->PointsToSendToProcessesLengths->GetValue(i)*numComponents);
sendOffsets->SetValue(i,
this->Internal->PointsToSendToProcessesOffsets->GetValue(i)*numComponents);
}
// Let each process have a turn sending data to the other processes.
// Upon receiving
for (int proc = 0; proc < this->NumberOfPieces; proc++)
{
// Scatter data from source. Note that lengths and offsets are only valid
// on the source process. All others are ignored.
vtkIdType destLength = numComponents*this->Internal->PointsExpectedFromProcessesLengths->GetValue(proc);
vtkIdType destOffset = numComponents*this->Internal->PointsExpectedFromProcessesOffsets->GetValue(proc);
this->Controller->GetCommunicator()->ScatterVVoidArray(
sendBuffer->GetVoidPointer(0),
finalDataArray->GetVoidPointer(destOffset),
sendLengths->GetPointer(0),
sendOffsets->GetPointer(0),
destLength, vtkType, proc);
}
return finalDataArray;
}
//-----------------------------------------------------------------------------
int vtkPSLACReader::ReadCoordinates(int meshFD, vtkMultiBlockDataSet *output)
{
// The superclass reads everything correctly because it will call our
// ReadPointDataArray method, which will properly redistribute points.
if (!this->Superclass::ReadCoordinates(meshFD, output)) return 0;
// This is a convenient place to set the global ids. Doing this in
// ReadFieldData is not a good idea as it might not be called if no mode
// file is specified.
vtkPointData *pd = vtkPointData::SafeDownCast(
output->GetInformation()->Get(vtkSLACReader::POINT_DATA()));
pd->SetGlobalIds(this->Internal->LocalToGlobalIds);
pd->SetPedigreeIds(this->Internal->LocalToGlobalIds);
return 1;
}
//-----------------------------------------------------------------------------
int vtkPSLACReader::ReadFieldData(const int *modeFDArray,
int numModeFDs,
vtkMultiBlockDataSet *output)
{
// The superclass reads everything correctly because it will call our
// ReadPointDataArray method, which will properly redistribute points.
return this->Superclass::ReadFieldData(modeFDArray, numModeFDs, output);
}
//-----------------------------------------------------------------------------
int vtkPSLACReader::ReadMidpointCoordinates (
int meshFD,
vtkMultiBlockDataSet *vtkNotUsed(output),
vtkSLACReader::MidpointCoordinateMap &map)
{
// Get the number of midpoints.
int midpointsVar;
CALL_NETCDF(nc_inq_varid(meshFD, "surface_midpoint", &midpointsVar));
this->NumberOfGlobalMidpoints = this->GetNumTuplesInVariable(meshFD,midpointsVar,5);
if (this->NumberOfGlobalMidpoints < 1) return 0;
vtkIdType numMidpointsPerPiece = this->NumberOfGlobalMidpoints/this->NumberOfPieces + 1;
vtkIdType startMidpoint = this->RequestedPiece*numMidpointsPerPiece;
vtkIdType endMidpoint = startMidpoint + numMidpointsPerPiece;
if (endMidpoint > this->NumberOfGlobalMidpoints)
{
endMidpoint = this->NumberOfGlobalMidpoints;
}
size_t starts[2];
size_t counts[2];
starts[0] = startMidpoint; counts[0] = endMidpoint - startMidpoint;
starts[1] = 0; counts[1] = 5;
VTK_CREATE (vtkDoubleArray, midpointData);
midpointData->SetNumberOfComponents(static_cast<int>(counts[1]));
midpointData->SetNumberOfTuples(static_cast<vtkIdType>(counts[0]));
CALL_NETCDF(nc_get_vars_double(meshFD, midpointsVar,
starts, counts, NULL,
midpointData->GetPointer(0)));
// Collect the midpoints we've read on the processes that originally read the
// corresponding main points (the edge the midpoint is on). These original
// processes are aware of who requested hose original points. Thus they can
// redistribute the midpoints that correspond to those processes that
// requested the original points.
std::vector<midpointListsType> midpointsToDistribute(this->NumberOfPieces);
int pointsPerProcess = this->NumberOfGlobalPoints / this->NumberOfPieces + 1;
for (vtkIdType i = 0; i < midpointData->GetNumberOfTuples(); i ++)
{
double *mp = midpointData->GetPointer(i*5);
midpointPositionType position;
position.coord[0] = mp[2];
position.coord[1] = mp[3];
position.coord[2] = mp[4];
midpointTopologyType topology;
topology.minEdgePoint = static_cast<vtkIdType>(vtkMath::Min(mp[0], mp[1]));
topology.maxEdgePoint = static_cast<vtkIdType>(vtkMath::Max(mp[0], mp[1]));
topology.globalId = i + startMidpoint + this->NumberOfGlobalPoints;
// find the processor the minimum edge point belongs to (by global id)
vtkIdType process = topology.minEdgePoint / pointsPerProcess;
// insert the midpoint's global point id into the data
midpointsToDistribute[process].position.push_back(position);
midpointsToDistribute[process].topology.push_back(topology);
}
midpointListsType midpointsToRedistribute;
for (int process = 0; process < this->NumberOfPieces; process++)
{
GatherMidpoints(this->Controller, midpointsToDistribute[process],
midpointsToRedistribute, process);
}
// Build a map of midpoints so that as processes request midpoints we can
// quickly find them.
MidpointsAvailableType MidpointsAvailable;
std::vector<midpointPositionType>::iterator posIter;
std::vector<midpointTopologyType>::iterator topIter;
for (posIter = midpointsToRedistribute.position.begin(),
topIter = midpointsToRedistribute.topology.begin();
posIter != midpointsToRedistribute.position.end();
posIter++, topIter++)
{
midpointPointersType mp;
mp.position = &(*posIter); mp.topology = &(*topIter);
#ifdef _RWSTD_NO_MEMBER_TEMPLATES
// Deal with Sun Studio old libCstd.
// http://sahajtechstyle.blogspot.com/2007/11/whats-wrong-with-sun-studio-c.html
MidpointsAvailable.insert(
std::pair<const EdgeEndpoints,midpointPointersType>(
EdgeEndpoints(topIter->minEdgePoint,topIter->maxEdgePoint),mp));
#else
MidpointsAvailable.insert(
std::make_pair(EdgeEndpoints(topIter->minEdgePoint,
topIter->maxEdgePoint),
mp));
#endif
}
// For each process, find the midpoints we need to send there and then
// send them with a gather operation.
midpointListsType midpointsToReceive;
for (int process = 0; process < this->NumberOfPieces; process++)
{
vtkIdType start
= this->Internal->EdgesToSendToProcessesOffsets->GetValue(process);
vtkIdType end
= start +this->Internal->EdgesToSendToProcessesLengths->GetValue(process);
start /= this->Internal->EdgesToSendToProcesses->GetNumberOfComponents();
end /= this->Internal->EdgesToSendToProcesses->GetNumberOfComponents();
// FIXME: There seems to be a bug somewhere that results in the
// EdgesToSendToProcesses array to be empty, while the corresponding
// Offsets and Lengths arrays are not. This only happens on some processes,
// and the PSLAC unit tests still pass. The bit below prevents invalid
// memory accesses when this occurs.
if (this->Internal->EdgesToSendToProcesses->GetNumberOfTuples() == 0 &&
this->Internal->EdgesToSendToProcessesOffsets->GetNumberOfTuples() != 0)
{
vtkWarningMacro("Inconsistent reader state detected. Skipping midpoint "
"sync.");
end = start = 0;
}
midpointListsType midpointsToSend;
for (vtkIdType i = start; i < end; i ++)
{
MidpointsAvailableType::const_iterator iter;
vtkIdType e[2];
this->Internal->EdgesToSendToProcesses->GetTypedTuple(i, e);
iter = MidpointsAvailable.find(EdgeEndpoints(e[0], e[1]));
if (iter != MidpointsAvailable.end ())
{
midpointsToSend.position.push_back(*iter->second.position);
midpointsToSend.topology.push_back(*iter->second.topology);
}
else // in order to have the proper length we must insert empty.
{
midpointPositionType position;
position.coord[0]=-1; position.coord[1]=-1; position.coord[2]=-1;
midpointTopologyType topology;
topology.minEdgePoint = -1; topology.maxEdgePoint = -1;
topology.globalId = -1;
midpointsToSend.position.push_back(position);
midpointsToSend.topology.push_back(topology);
}
}
GatherMidpoints(this->Controller, midpointsToSend,
midpointsToReceive, process);
}
// finally, we have all midpoints that correspond to edges we know about
// convert their edge points to localId and insert into the map and return.
typedef vtksys::hash_map<vtkIdType, vtkIdType, vtkPSLACReaderIdTypeHash> localMapType;
localMapType localMap;
for (posIter = midpointsToReceive.position.begin(),
topIter = midpointsToReceive.topology.begin();
posIter != midpointsToReceive.position.end();
posIter++, topIter++)
{
if (topIter->globalId < 0) continue;
vtkIdType local0 = this->Internal->GlobalToLocalIds[topIter->minEdgePoint];
vtkIdType local1 = this->Internal->GlobalToLocalIds[topIter->maxEdgePoint];
localMapType::const_iterator iter;
iter = localMap.find(topIter->globalId);
vtkIdType index;
if (iter == localMap.end())
{
index = this->Internal->LocalToGlobalIds->InsertNextTypedTuple(
&topIter->globalId);
localMap[topIter->globalId] = index;
}
else
{
index = iter->second;
}
map.AddMidpoint(vtkSLACReader::EdgeEndpoints(local0, local1),
vtkSLACReader::MidpointCoordinates(posIter->coord, index));
}
return 1;
}
//-----------------------------------------------------------------------------
int vtkPSLACReader::ReadMidpointData(int meshFD, vtkMultiBlockDataSet *output,
vtkSLACReader::MidpointIdMap &map)
{
int result = this->Superclass::ReadMidpointData(meshFD, output, map);
if (result != 1)
{
return result;
}
// add global IDs for midpoints added that weren't in the file
vtkPoints *points = vtkPoints::SafeDownCast(
output->GetInformation()->Get(vtkSLACReader::POINTS()));
vtkIdType pointsAdded = points->GetNumberOfPoints () -
this->Internal->LocalToGlobalIds->GetNumberOfTuples ();
// Use the maximum number of points added so that the offsets don't overlap
// There will be gaps and shared edges between two processes will get different ids
// TODO: Will this cause problems?
vtkIdType maxPointsAdded;
this->Controller->AllReduce (&pointsAdded, &maxPointsAdded, 1, vtkCommunicator::MAX_OP);
vtkIdType start = this->NumberOfGlobalPoints + this->NumberOfGlobalMidpoints +
this->RequestedPiece*maxPointsAdded;
vtkIdType end = start + pointsAdded;
for (vtkIdType i = start; i < end; i ++)
{
this->Internal->LocalToGlobalIds->InsertNextTypedTuple (&i);
}
return 1;
}
//-----------------------------------------------------------------------------
int vtkPSLACReader::MeshUpToDate()
{
int localflag = this->Superclass::MeshUpToDate();
localflag &= (this->NumberOfPieces != this->NumberOfPiecesCache);
localflag &= (this->RequestedPieceCache != this->RequestedPiece);
int globalflag;
this->Controller->AllReduce(&localflag, &globalflag, 1,
vtkCommunicator::LOGICAL_AND_OP);
return globalflag;
}
|