File: vtkVPICReader.cxx

package info (click to toggle)
vtk7 7.1.1%2Bdfsg1-12
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 125,776 kB
  • sloc: cpp: 1,539,582; ansic: 106,521; python: 78,038; tcl: 47,013; xml: 8,142; yacc: 5,040; java: 4,439; perl: 3,132; lex: 1,926; sh: 1,500; makefile: 122; objc: 83
file content (632 lines) | stat: -rw-r--r-- 22,096 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkVPICReader.cxx

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
#include "vtkVPICReader.h"

#include "vtkCallbackCommand.h"
#include "vtkDataArraySelection.h"
#include "vtkDataObject.h"
#include "vtkErrorCode.h"
#include "vtkFloatArray.h"
#include "vtkImageData.h"
#include "vtkInformation.h"
#include "vtkInformationVector.h"
#include "vtkIntArray.h"
#include "vtkObjectFactory.h"
#include "vtkPointData.h"
#include "vtkStreamingDemandDrivenPipeline.h"
#include "vtkToolkits.h"

#include "vtkMultiProcessController.h"

#include "VPICDataSet.h"
#include "GridExchange.h"
#include "VPICView.h"

vtkStandardNewMacro(vtkVPICReader);

//----------------------------------------------------------------------------
// Constructor for VPIC Reader
//----------------------------------------------------------------------------
vtkVPICReader::vtkVPICReader()
{
  this->SetNumberOfInputPorts(0);
  this->SetNumberOfOutputPorts(1);

  this->FileName = NULL;
  this->NumberOfNodes = 0;
  this->NumberOfVariables = 0;
  this->CurrentTimeStep = -1;
  this->PointDataArraySelection = vtkDataArraySelection::New();

  // Setup selection callback to modify this object when array selection changes
  this->SelectionObserver = vtkCallbackCommand::New();
  this->SelectionObserver->SetCallback(&vtkVPICReader::SelectionCallback);
  this->SelectionObserver->SetClientData(this);
  this->PointDataArraySelection->AddObserver(vtkCommand::ModifiedEvent,
                                             this->SelectionObserver);
  // External VPICDataSet for actually reading files
  this->vpicData = 0;
  this->exchanger = 0;
  this->VariableName = 0;
  this->VariableStruct = 0;
  this->TimeSteps = 0;
  this->dataLoaded = 0;
  this->data = 0;

  // One overlap cell on first plane and one extra on last plane
  this->ghostLevel0 = 1;
  this->ghostLevel1 = 2;

  this->Stride[0] = 1;
  this->Stride[1] = 1;
  this->Stride[2] = 1;

  this->XLayout[0] = 1;
  this->YLayout[0] = 1;
  this->ZLayout[0] = 1;
  this->XLayout[1] = -1;
  this->YLayout[1] = -1;
  this->ZLayout[1] = -1;

  this->MPIController = vtkMultiProcessController::GetGlobalController();

  if(this->MPIController)
  {
    this->Rank = this->MPIController->GetLocalProcessId();
    this->TotalRank = this->MPIController->GetNumberOfProcesses();
  }
  else
  {
    this->Rank = 0;
    this->TotalRank = 1;
  }

  this->UsedRank = 0;

  this->XExtent[0] = this->XExtent[1] = 0;
  this->YExtent[0] = this->YExtent[1] = 0;
  this->ZExtent[0] = this->ZExtent[1] = 0;

  this->Stride[0] = this->Stride[1] = this->Stride[2] = 1;
}

//----------------------------------------------------------------------------
// Destructor for VPIC Reader
//----------------------------------------------------------------------------
vtkVPICReader::~vtkVPICReader()
{
  delete [] this->FileName;
  this->PointDataArraySelection->Delete();

  delete this->vpicData;
  delete [] this->VariableName;
  delete [] this->VariableStruct;
  delete [] this->TimeSteps;
  delete [] this->dataLoaded;

  delete this->exchanger;

  if (this->data)
  {
    for (int var = 0; var < this->NumberOfVariables; var++)
    {
      if (this->data[var])
      {
        this->data[var]->Delete();
      }
    }
    delete [] this->data;
  }

  this->SelectionObserver->Delete();

  // Do not delete the MPIController it is Singleton like and will
  // cleanup itself;
  this->MPIController = NULL;
}

//----------------------------------------------------------------------------
// Verify that the file exists
//----------------------------------------------------------------------------
int vtkVPICReader::RequestInformation(
  vtkInformation *vtkNotUsed(reqInfo),
  vtkInformationVector **vtkNotUsed(inVector),
  vtkInformationVector *outVector)
{
  // Verify that file exists
  if ( !this->FileName ) {
    vtkErrorMacro("No filename specified");
    return 0;
  }

  // Get ParaView information and output pointers
  vtkInformation* outInfo = outVector->GetInformationObject(0);
  vtkImageData *output = vtkImageData::SafeDownCast(
    outInfo->Get(vtkDataObject::DATA_OBJECT()));

  // RequestInformation() is called for every Modified() event which means
  // when more variable data is selected, time step is changed or stride
  // is changed it will be called again
  // Only want to create the VPICDataSet one time

  if (this->vpicData == 0) {

    // Create the general VPICDataSet structure first time method is called
    // At this point we only know the file name driving the data set but
    // no variables or strides have been selected

    // Object which will know all of structure and processor part of the data
    this->vpicData = new VPICDataSet();
    this->vpicData->setRank(this->Rank);
    this->vpicData->setTotalRank(this->TotalRank);

    // Set the variable names and types
    // Build the partition table which shows the relation of each file
    // within the entire problem set, but does not partition between processors
    this->vpicData->initialize(this->FileName);

    // Copy in variable names to be offered
    this->NumberOfVariables = this->vpicData->getNumberOfVariables();
    this->VariableName = new vtkStdString[this->NumberOfVariables];

    // Data is SCALAR, VECTOR or TENSOR
    this->VariableStruct = new int[this->NumberOfVariables];

    for (int var = 0; var < this->NumberOfVariables; var++) {
      this->VariableName[var] = this->vpicData->getVariableName(var);
      this->VariableStruct[var] = this->vpicData->getVariableStruct(var);
      this->PointDataArraySelection->AddArray(this->VariableName[var].c_str());
    }

    // Allocate the ParaView data arrays which will hold the variable data
    this->data = new vtkFloatArray*[this->NumberOfVariables];
    this->dataLoaded = new int[this->NumberOfVariables];
    for (int var = 0; var < this->NumberOfVariables; var++) {
      this->data[var] = vtkFloatArray::New();
      this->data[var]->SetName(VariableName[var].c_str());
      this->dataLoaded[var] = 0;
    }

    // Set the overall problem file decomposition for the GUI extent range
    int layoutSize[DIMENSION];
    this->vpicData->getLayoutSize(layoutSize);
    this->XLayout[0] = 0;       this->XLayout[1] = layoutSize[0] - 1;
    this->YLayout[0] = 0;       this->YLayout[1] = layoutSize[1] - 1;
    this->ZLayout[0] = 0;       this->ZLayout[1] = layoutSize[2] - 1;

    outInfo->Set(CAN_HANDLE_PIECE_REQUEST(),
     1);

    // Collect temporal information
    this->NumberOfTimeSteps = this->vpicData->getNumberOfTimeSteps();
    this->TimeSteps = NULL;

    if (this->NumberOfTimeSteps > 0) {
      this->TimeSteps = new double[this->NumberOfTimeSteps];

      for (int step = 0; step < this->NumberOfTimeSteps; step++)
         this->TimeSteps[step] = (double) this->vpicData->getTimeStep(step);

      // Tell the pipeline what steps are available
      outInfo->Set(vtkStreamingDemandDrivenPipeline::TIME_STEPS(),
                   this->TimeSteps, this->NumberOfTimeSteps);

      // Range is required to get GUI to show things
      double tRange[2];
      tRange[0] = this->TimeSteps[0];
      tRange[1] = this->TimeSteps[this->NumberOfTimeSteps - 1];
      outInfo->Set(vtkStreamingDemandDrivenPipeline::TIME_RANGE(),
                   tRange, 2);
    } else {
      outInfo->Remove(vtkStreamingDemandDrivenPipeline::TIME_STEPS());
      outInfo->Set(vtkStreamingDemandDrivenPipeline::TIME_STEPS(),
                   this->TimeSteps, this->NumberOfTimeSteps);
    }
  }

  // Set the current stride within the dataset
  // If it is a new stride the dataset will indicate that a new partition
  // must be done so that new grid subextents are set on each processor
  this->vpicData->setView(this->XExtent, this->YExtent, this->ZExtent);
  this->vpicData->setStride(this->Stride);

  // Repartition only has to be done when the stride changes
  // To handle the loading for the very first time, vpicData stride is set
  // to 0 so that by setting to the default of 1, the partition has be to done
  if (this->vpicData->needsGridCalculation() == true) {

    // If grid is recalculated all data must be realoaded
    for (int var = 0; var < this->NumberOfVariables; var++)
      this->dataLoaded[var] = 0;

    // Partitions the data between processors and sets grid extents
    this->vpicData->calculateGridExtents();

    this->NumberOfCells = this->vpicData->getNumberOfCells();
    this->NumberOfNodes = this->vpicData->getNumberOfNodes();

    // Set the whole extent
    this->vpicData->getGridSize(this->Dimension);
    this->vpicData->getWholeExtent(this->WholeExtent);
    output->SetDimensions(this->Dimension);

    outInfo->Set(vtkStreamingDemandDrivenPipeline::WHOLE_EXTENT(),
                 this->WholeExtent, 6);

    int processorUsed = this->vpicData->getProcessorUsed();

    if(this->MPIController)
    {
      this->MPIController->AllReduce(&processorUsed, &this->UsedRank,
                                     1, vtkCommunicator::SUM_OP);
    }

    this->vpicData->getSubExtent(this->Rank, this->SubExtent);

    // Reset the SubExtent on this processor to include ghost cells
    // Leave the subextents in the extent table as the size without ghosts
    for (int dim = 0; dim < DIMENSION; dim++) {
      if (this->SubExtent[dim*2] != 0)
        this->SubExtent[dim*2] -= 1;
      if (this->SubExtent[dim*2+1] != this->Dimension[dim] - 1)
        this->SubExtent[dim*2+1] += 1;
    }

    // Set the subextent dimension size
    if (processorUsed == 1) {
      this->SubDimension[0] = this->SubExtent[1] - this->SubExtent[0] + 1;
      this->SubDimension[1] = this->SubExtent[3] - this->SubExtent[2] + 1;
      this->SubDimension[2] = this->SubExtent[5] - this->SubExtent[4] + 1;
    } else {
      this->SubDimension[0] = 0;
      this->SubDimension[1] = 0;
      this->SubDimension[2] = 0;
    }

    // Total size of the subextent
    this->NumberOfTuples = 1;
    for (int dim = 0; dim < DIMENSION; dim++)
      this->NumberOfTuples *= this->SubDimension[dim];

    // Set ghost cell edges
    this->NumberOfGhostTuples = 1;
    for (int dim = 0; dim < DIMENSION; dim++) {

      // Local block dimensions for loading a component of data
      // Different number of ghost cells are added depending on where the
      // processor is in the problem grid
      this->GhostDimension[dim] = this->SubDimension[dim];

      // If processor is on an edge don't write a ghost cell (offset the start)
      this->Start[dim] = 0;
      if (SubExtent[dim*2] == 0) {
        this->Start[dim] = this->ghostLevel0;
        this->GhostDimension[dim] += this->ghostLevel0;
      }

      // Processors not on last plane already have one overlap cell
      if (SubExtent[dim*2 + 1] == (this->Dimension[dim] - 1)) {
        this->GhostDimension[dim] += this->ghostLevel1;
      }

      // Size of the local block for loading a component of data with ghosts
      this->NumberOfGhostTuples *= this->GhostDimension[dim];
    }

    if (this->TotalRank>1)
    {
      // Set up the GridExchange for sharing ghost cells on this view
      int decomposition[DIMENSION];
      this->vpicData->getDecomposition(decomposition);

      delete this->exchanger;

      this->exchanger = new GridExchange
        (this->Rank, this->TotalRank, decomposition,
         this->GhostDimension, this->ghostLevel0, this->ghostLevel1);
    }
  }
  return 1;
}

//----------------------------------------------------------------------------
// Data is read into a vtkImageData
// BLOCK structured means data is organized by variable and then by cell
//----------------------------------------------------------------------------
int vtkVPICReader::RequestData(
  vtkInformation *vtkNotUsed(reqInfo),
  vtkInformationVector **vtkNotUsed(inVector),
  vtkInformationVector *outVector)
{
  vtkInformation *outInfo = outVector->GetInformationObject(0);
  vtkImageData *output = vtkImageData::SafeDownCast(
    outInfo->Get(vtkDataObject::DATA_OBJECT()));

  // Set the subextent for this processor
  output->SetExtent(this->SubExtent);

  // Ask VPICDataSet to check for additional time steps
  // If found VPICDataSet will update its structure
  this->vpicData->addNewTimeSteps();
  int numberOfTimeSteps = this->vpicData->getNumberOfTimeSteps();

  // If more time steps ParaView must update information
  if (numberOfTimeSteps > this->NumberOfTimeSteps) {

    this->NumberOfTimeSteps = numberOfTimeSteps;
    delete [] this->TimeSteps;
    this->TimeSteps = new double[this->NumberOfTimeSteps];

    for (int step = 0; step < this->NumberOfTimeSteps; step++)
      this->TimeSteps[step] = (double) this->vpicData->getTimeStep(step);

    // Tell the pipeline what steps are available
    outInfo->Set(vtkStreamingDemandDrivenPipeline::TIME_STEPS(),
                 this->TimeSteps, this->NumberOfTimeSteps);

    // Range is required to get GUI to show things
    double tRange[2];
    tRange[0] = this->TimeSteps[0];
    tRange[1] = this->TimeSteps[this->NumberOfTimeSteps - 1];
    outInfo->Set(vtkStreamingDemandDrivenPipeline::TIME_RANGE(), tRange, 2);
  }

  // Collect the time step requested
  double requestedTimeStep(0);
  vtkInformationDoubleKey* timeKey =
    static_cast<vtkInformationDoubleKey*>
      (vtkStreamingDemandDrivenPipeline::UPDATE_TIME_STEP());

  // Actual time for the time step
  double dTime = this->TimeSteps[0];
  if (outInfo->Has(timeKey)) {
    requestedTimeStep = outInfo->Get(timeKey);
    dTime = requestedTimeStep;
  }

  output->GetInformation()->Set(vtkDataObject::DATA_TIME_STEP(), dTime);

  // Index of the time step to request
  int timeStep = 0;
  while (timeStep < this->NumberOfTimeSteps &&
         this->TimeSteps[timeStep] < dTime)
    timeStep++;

  // If this is a new time step read all the data from files
  int timeChanged = 0;
  if (this->CurrentTimeStep != timeStep) {
    timeChanged = 1;
    this->CurrentTimeStep = timeStep;
  }

  // Get size information from the VPICDataSet to set ImageData
  double origin[DIMENSION], step[DIMENSION];
  this->vpicData->getOrigin(origin);
  this->vpicData->getStep(step);
  output->SetSpacing(step);
  output->SetOrigin(origin);

  // Examine each variable to see if it is selected
  for (int var = 0; var < this->NumberOfVariables; var++) {

    // Is this variable requested
    if (this->PointDataArraySelection->GetArraySetting(var)) {
      if (this->dataLoaded[var] == 0 || timeChanged) {
        LoadVariableData(var, timeStep);
        this->dataLoaded[var] = 1;
      }
      output->GetPointData()->AddArray(this->data[var]);

    } else {
      this->dataLoaded[var] = 0;
    }
  }
  return 1;
}

//----------------------------------------------------------------------------
// Load one variable data array of BLOCK structure into ParaView
//----------------------------------------------------------------------------
void vtkVPICReader::LoadVariableData(int var, int timeStep)
{
  this->data[var]->Delete();
  this->data[var] = vtkFloatArray::New();
  this->data[var]->SetName(VariableName[var].c_str());

  /*
  if (this->Rank == 0)
    cout << "LoadVariableData " << this->VariableName[var]
         << " time " << timeStep << endl;
  */

  // First set the number of components for this variable
  int numberOfComponents = 0;
  if (this->VariableStruct[var] == SCALAR) {
    numberOfComponents = 1;
    this->data[var]->SetNumberOfComponents(numberOfComponents);
  }
  else if (this->VariableStruct[var] == VECTOR) {
    numberOfComponents = DIMENSION;
    this->data[var]->SetNumberOfComponents(numberOfComponents);
  }
  else if (this->VariableStruct[var] == TENSOR) {
    numberOfComponents = TENSOR_DIMENSION;
    this->data[var]->SetNumberOfComponents(TENSOR9_DIMENSION);
  }

  // Second set the number of tuples which will allocate all tuples
  this->data[var]->SetNumberOfTuples(this->NumberOfTuples);

  // For each component of the requested variable load data
  float* block = new float[this->NumberOfGhostTuples];
  float* varData = this->data[var]->GetPointer(0);

  for (int comp = 0; comp < numberOfComponents; comp++) {

    // Fetch the data for a single component into temporary storage
    this->vpicData->loadVariableData(block, this->ghostLevel0,
                                     this->GhostDimension, timeStep, var, comp);

    // Exchange the single component block retrieved from files to get ghosts
    if (this->TotalRank>1)
    {
      this->exchanger->exchangeGrid(block);
    }

    // Load the ghost component block into ParaView array
    if (this->VariableStruct[var] != TENSOR) {
      LoadComponent(varData, block, comp, numberOfComponents);
    }

    else {
      // Tensors are 6 point and must be written as 9 point
      // (0->0) (1->4) (2->8) (3->5,7) (4->2,6) (5->1,3)
      switch (comp) {
      case 0:
        LoadComponent(varData, block, 0, TENSOR9_DIMENSION);
        break;
      case 1:
        LoadComponent(varData, block, 4, TENSOR9_DIMENSION);
        break;
      case 2:
        LoadComponent(varData, block, 8, TENSOR9_DIMENSION);
        break;
      case 3:
        LoadComponent(varData, block, 5, TENSOR9_DIMENSION);
        LoadComponent(varData, block, 7, TENSOR9_DIMENSION);
        break;
      case 4:
        LoadComponent(varData, block, 2, TENSOR9_DIMENSION);
        LoadComponent(varData, block, 6, TENSOR9_DIMENSION);
        break;
      case 5:
        LoadComponent(varData, block, 1, TENSOR9_DIMENSION);
        LoadComponent(varData, block, 3, TENSOR9_DIMENSION);
        break;
      }
    }
  }
  delete [] block;
}

//----------------------------------------------------------------------------
// Load one component from the local VPIC ghost enhanced block into the
// ParaView vtkFloatArray taking into account whether the processor is
// on the front plane, the back plane or in the middle which affects
// the ghost cells which can be loaded.  ParaView array is contiguous
// memory so start at the right location and offset by number of components
//----------------------------------------------------------------------------
void vtkVPICReader::LoadComponent(float* varData, float* block,
                                  int comp, int numberOfComponents)
{

  // Load into the data array by tuple so place data every comp'th spot
  int pos = comp;
  for (int k = 0; k < this->SubDimension[2]; k++) {
    int kk = k + this->Start[2];
    for (int j = 0; j < this->SubDimension[1]; j++) {
      int jj = j + this->Start[1];
      for (int i = 0; i < this->SubDimension[0]; i++) {
        int ii = i + this->Start[0];

        int index = (kk * this->GhostDimension[0] * this->GhostDimension[1]) +
                    (jj * this->GhostDimension[0]) + ii;

        varData[pos] = block[index];
        pos += numberOfComponents;
      }
    }
  }
}

//----------------------------------------------------------------------------
void vtkVPICReader::SelectionCallback(vtkObject*, unsigned long vtkNotUsed(eventid),
                                      void* clientdata, void* vtkNotUsed(calldata))
{
  static_cast<vtkVPICReader*>(clientdata)->Modified();
}

//----------------------------------------------------------------------------
vtkImageData* vtkVPICReader::GetOutput()
{
  return this->GetOutput(0);
}

//----------------------------------------------------------------------------
vtkImageData* vtkVPICReader::GetOutput(int idx)
{
  if (idx)
  {
    return NULL;
  }
  else
  {
    return vtkImageData::SafeDownCast( this->GetOutputDataObject(idx) );
  }
}

//----------------------------------------------------------------------------
int vtkVPICReader::GetNumberOfPointArrays()
{
  return this->PointDataArraySelection->GetNumberOfArrays();
}

//----------------------------------------------------------------------------
void vtkVPICReader::EnableAllPointArrays()
{
    this->PointDataArraySelection->EnableAllArrays();
}

//----------------------------------------------------------------------------
void vtkVPICReader::DisableAllPointArrays()
{
    this->PointDataArraySelection->DisableAllArrays();
}

//----------------------------------------------------------------------------
const char* vtkVPICReader::GetPointArrayName(int index)
{
  return this->VariableName[index].c_str();
}

//----------------------------------------------------------------------------
int vtkVPICReader::GetPointArrayStatus(const char* name)
{
  return this->PointDataArraySelection->ArrayIsEnabled(name);
}

//----------------------------------------------------------------------------
void vtkVPICReader::SetPointArrayStatus(const char* name, int status)
{
  if (status)
    this->PointDataArraySelection->EnableArray(name);
  else
    this->PointDataArraySelection->DisableArray(name);
}

void vtkVPICReader::PrintSelf(ostream& os, vtkIndent indent)
{
  os << indent << "FileName: " << (this->FileName != NULL ? this->FileName : "") << endl;
  os << indent << "Stride: {" << this->Stride[0] << ", " << this->Stride[1]
     << ", " << this->Stride[2] << "}" << endl;
  os << indent << "XLayout: {" << this->XLayout[0] << ", " << this->XLayout[1] << "}" << endl;
  os << indent << "YLayout: {" << this->YLayout[0] << ", " << this->YLayout[1] << "}" << endl;
  os << indent << "ZLayout: {" << this->ZLayout[0] << ", " << this->ZLayout[1] << "}" << endl;
  os << indent << "XExtent: {" << this->XExtent[0] << ", " << this->XExtent[1] << "}" << endl;
  os << indent << "YExtent: {" << this->YExtent[0] << ", " << this->YExtent[1] << "}" << endl;
  os << indent << "ZExtent: {" << this->ZExtent[0] << ", " << this->ZExtent[1] << "}" << endl;

  this->Superclass::PrintSelf(os, indent);
}