1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
|
//VTK::System::Dec
/*=========================================================================
Program: VTK
Module: vtkEDLShadeFS.glsl
Copyright (c) 2005-2008 Sandia Corporation, Kitware Inc.
All rights reserved.
ParaView is a free software; you can redistribute it and/or modify it
under the terms of the ParaView license version 1.2.
See License_v1.2.txt for the full ParaView license.
A copy of this license can be obtained by contacting
Kitware Inc.
28 Corporate Drive
Clifton Park, NY 12065
USA
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=========================================================================*/
/*----------------------------------------------------------------------
Acknowledgement:
This algorithm is the result of joint work by Electricité de France,
CNRS, Collège de France and Université J. Fourier as part of the
Ph.D. thesis of Christian BOUCHENY.
------------------------------------------------------------------------*/
//////////////////////////////////////////////////////////////////////////
//
//
// EyeDome Lighting - Simplified version for use in VTK
// - oriented light
// - no focus
// - some uniforms transformed to local variables
//
// C.B. - 3 feb. 2009
//
// IN: Depth buffer of the scene
// r = recorded z, in [0:1]
// OUT: EDL shaded image
//
//////////////////////////////////////////////////////////////////////////
// the output of this shader
//VTK::Output::Dec
varying vec2 tcoordVC;
/**************************************************/
uniform sampler2D s2_depth; // - Z Map
uniform float d; // [1.0 in full res - 2.0 at lower res]
//- Extension in image space, in pixels
uniform vec4 N[8]; //- Array of neighbours
// [No support for TabUniform in VTK
// --> constant array, hereafter]
uniform float F_scale; // [5.] - Shading amplification factor
uniform float SX; // - pixel horizontal step (image distance: 1/w)
uniform float SY; //- pixel vertical step (image distance: 1/h)
uniform float Znear; // near clipping plane
uniform float Zfar; // far clipping plane
uniform float SceneSize; // typical scene size, to scale the depth by.
uniform vec3 L; // [0.,0.,-1.] - Light direction [frontal]
/**************************************************/
/**************************************************/
int Nnb = 1; // nombre de voisins par rayon
float Zm = 0.; // minimal z in image
float ZM = 1.; // maximal z in image
float Z; // initial Z
vec3 WHITE3 = vec3(1.,1.,1.);
float t;
vec4 Zn[8]; // profondeurs des voisins
float D[8]; // ombrage genere par les voisins
vec4 tn, tnw, tw, tsw, ts, tse, te, tne;
float dn, dnw, dw, dsw, ds, dse, de, dne;
float S; // image step, corresponds to one pixel size
/**************************************************/
//////////////////////////////////////////////////////////////////////////
//
// Local shading functions
//
// Pseudo angle, avec S (distance pixel) valant l'unite
// zi elevation of current pixel
// zj elevation of its neighbour
// delta distance between the two
float angleP(float zi, float zj, float delta)
{
return max(0.,zj-zi) / (delta/S);
}
// zi elevation of current pixel
// zj elevation of its neighbour
// delta distance between the two
float obscurance(float zi, float zj, float delta)
{
return angleP(zi,zj,delta);
}
//
// Local shading functions
//
//////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////
//
// Z transformation
//
float zflip(float z)
{
return 1. - z;
}
float zscale(float z)
{
return clamp((z-Zm)/(ZM-Zm),0.,1.);
}
// Inversion of OpenGL perspective projection
// (should be adapted for orthographic projection)
//
float ztransform(float z)
{
float Z;
Z = (z-0.5)*2.;
Z = -2.*Zfar*Znear/( (Zfar-Znear) * (Z-(Zfar+Znear)/(Zfar-Znear)) );
Z = (Z-Znear)/SceneSize;
return 1.-Z;
}
//
// Z transformation
//
//////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////
//
// NEIGHBORHOOD SHADING
//
void computeNeighbours8(float dist)
{
// Plan Lumiere-point
vec4 P = vec4( L.xyz , -dot(L.xyz,vec3(0.,0.,t)) );
// 0 at the back of the scene
int c;
vec2 V; // pixel voisin
float di = dist;
float Znp[8]; // profondeur des 8 voisins sur le plan
for(c=0; c<8;c++)
{
V = tcoordVC.st + di*vec2(SX,SY)*N[c].xy;
Zn[c].x = ztransform(texture2D(s2_depth,V).r);
// profondeur du voisin reel dans l'image
// VERSION qui ombre le fond
Znp[c] = dot( vec4(di*vec2(SX,SY)*N[c].xy, Zn[c].x, 1.0) , P );
}
dn = obscurance( 0., Znp[0] ,di*SX);
dnw = obscurance( 0., Znp[1],di*SX);
dw = obscurance( 0., Znp[2] ,di*SX);
dsw = obscurance( 0., Znp[3],di*SX);
ds = obscurance( 0., Znp[4] ,di*SX);
dse = obscurance( 0., Znp[5],di*SX);
de = obscurance( 0., Znp[6] ,di*SX);
dne = obscurance( 0., Znp[7],di*SX);
}
float computeObscurance(float F,float scale,float weight)
{
computeNeighbours8( scale );
float S = F;
float WE = weight;
S += dn * WE;
S += dnw * WE;
S += dw * WE;
S += dsw * WE;
S += ds * WE;
S += dse * WE;
S += de * WE;
S += dne * WE;
return S;
}
void ambientOcclusion()
{
float F = 0.;
float weight = 20.; // 2. * 3.14159;
F = computeObscurance(F,d,weight);
F = exp(-F_scale*F);
gl_FragData[0] = vec4(F,F,F,Z);
}
void main (void)
{
S = SX;
Z = texture2D(s2_depth, tcoordVC.st).r;
t = ztransform(Z);
ambientOcclusion();
}
|