1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
|
/*=========================================================================
Program: Visualization Toolkit
Module: ArrayCasting.cxx
-------------------------------------------------------------------------
Copyright 2008 Sandia Corporation.
Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
the U.S. Government retains certain rights in this software.
-------------------------------------------------------------------------
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include <vtkDenseArray.h>
#include <vtkSmartPointer.h>
#include <vtkSparseArray.h>
#include <vtkTryDowncast.h>
#include <iostream>
#include <sstream>
#include <stdexcept>
#include <boost/algorithm/string.hpp>
#define VTK_CREATE(type, name) \
vtkSmartPointer<type> name = vtkSmartPointer<type>::New()
#define test_expression(expression) \
{ \
if(!(expression)) \
{ \
std::ostringstream buffer; \
buffer << "Expression failed at line " << __LINE__ << ": " << #expression; \
throw std::runtime_error(buffer.str()); \
} \
}
class DowncastTest
{
public:
DowncastTest(int& count) :
Count(count)
{
}
template<typename T>
void operator()(T* vtkNotUsed(array)) const
{
++Count;
}
int& Count;
private:
DowncastTest& operator=(const DowncastTest&);
};
template<template <typename> class TargetT, typename TypesT>
void SuccessTest(vtkObject* source, int line)
{
int count = 0;
if(!vtkTryDowncast<TargetT, TypesT>(source, DowncastTest(count)))
{
std::ostringstream buffer;
buffer << "Expression failed at line " << line;
throw std::runtime_error(buffer.str());
}
if(count != 1)
{
std::ostringstream buffer;
buffer << "Functor was called " << count << " times at line " << line;
throw std::runtime_error(buffer.str());
}
}
template<template <typename> class TargetT, typename TypesT>
void FailTest(vtkObject* source, int line)
{
int count = 0;
if(vtkTryDowncast<TargetT, TypesT>(source, DowncastTest(count)))
{
std::ostringstream buffer;
buffer << "Expression failed at line " << line;
throw std::runtime_error(buffer.str());
}
if(count != 0)
{
std::ostringstream buffer;
buffer << "Functor was called " << count << " times at line " << line;
throw std::runtime_error(buffer.str());
}
}
/*
// This functor increments array values in-place using a parameter passed via the algorithm (instead of a parameter
// stored in the functor). It can work with any numeric array type.
struct IncrementValues
{
template<typename T>
void operator()(T* array, int amount) const
{
for(vtkIdType n = 0; n != array->GetNonNullSize(); ++n)
array->SetValueN(n, array->GetValueN(n) + amount);
}
};
// This functor converts strings in-place to a form suitable for case-insensitive comparison. It's an example of
// how you can write generic code while still specializing functionality on a case-by-case basis, since
// in this situation we want to use some special functionality provided by vtkUnicodeString.
struct FoldCase
{
template<typename ValueT>
void operator()(vtkTypedArray<ValueT>* array) const
{
for(vtkIdType n = 0; n != array->GetNonNullSize(); ++n)
{
ValueT value = array->GetValueN(n);
boost::algorithm::to_lower(value);
array->SetValueN(n, value);
}
}
void operator()(vtkTypedArray<vtkUnicodeString>* array) const
{
for(vtkIdType n = 0; n != array->GetNonNullSize(); ++n)
array->SetValueN(n, array->GetValueN(n).fold_case());
}
};
// This functor efficiently creates a transposed array. It's one example of how you can create an output array
// with the same type as an input array.
struct Transpose
{
Transpose(vtkSmartPointer<vtkArray>& result_matrix) : ResultMatrix(result_matrix) {}
template<typename ValueT>
void operator()(vtkDenseArray<ValueT>* input) const
{
if(input->GetDimensions() != 2 || input->GetExtents()[0] != input->GetExtents()[1])
throw std::runtime_error("A square matrix is required.");
vtkDenseArray<ValueT>* output = vtkDenseArray<ValueT>::SafeDownCast(input->DeepCopy());
for(vtkIdType i = 0; i != input->GetExtents()[0]; ++i)
{
for(vtkIdType j = i + 1; j != input->GetExtents()[1]; ++j)
{
output->SetValue(i, j, input->GetValue(j, i));
output->SetValue(j, i, input->GetValue(i, j));
}
}
this->ResultMatrix = output;
}
vtkSmartPointer<vtkArray>& ResultMatrix;
};
*/
//
//
// Here are some examples of how the algorithm might be called.
//
//
int TestArrayCasting(int vtkNotUsed(argc), char *vtkNotUsed(argv)[])
{
try
{
/* this "if" is a temporary workaround for the clang compiler,
* everything inside "#ifdef __clang__" should be removed when
* clang no longer needs these templates to be instantiated. */
#ifdef __clang__
VTK_CREATE(vtkDenseArray<vtkUnicodeString>, dense_unicode);
VTK_CREATE(vtkDenseArray<vtkStdString>, dense_string);
VTK_CREATE(vtkDenseArray<vtkTypeFloat32>, dense_float);
VTK_CREATE(vtkDenseArray<vtkTypeFloat64>, dense_double);
VTK_CREATE(vtkDenseArray<vtkTypeUInt8>, dense_uchar);
VTK_CREATE(vtkDenseArray<vtkTypeInt8>, dense_schar);
VTK_CREATE(vtkDenseArray<vtkTypeUInt16>, dense_ushort);
VTK_CREATE(vtkDenseArray<vtkTypeInt16>, dense_short);
VTK_CREATE(vtkDenseArray<vtkTypeUInt32>, dense_uint);
VTK_CREATE(vtkDenseArray<vtkTypeInt32>, dense_int);
VTK_CREATE(vtkDenseArray<vtkTypeUInt64>, dense_ulonglong);
VTK_CREATE(vtkDenseArray<vtkTypeInt64>, dense_longlong);
VTK_CREATE(vtkDenseArray<vtkIdType>, dense_idtype);
VTK_CREATE(vtkSparseArray<vtkUnicodeString>, sparse_unicode);
VTK_CREATE(vtkSparseArray<vtkStdString>, sparse_string);
VTK_CREATE(vtkSparseArray<vtkTypeFloat32>, sparse_float);
VTK_CREATE(vtkSparseArray<vtkTypeFloat64>, sparse_double);
VTK_CREATE(vtkSparseArray<vtkTypeUInt8>, sparse_uchar);
VTK_CREATE(vtkSparseArray<vtkTypeInt8>, sparse_schar);
VTK_CREATE(vtkSparseArray<vtkTypeUInt16>, sparse_ushort);
VTK_CREATE(vtkSparseArray<vtkTypeInt16>, sparse_short);
VTK_CREATE(vtkSparseArray<vtkTypeUInt32>, sparse_uint);
VTK_CREATE(vtkSparseArray<vtkTypeInt32>, sparse_int);
VTK_CREATE(vtkSparseArray<vtkTypeUInt64>, sparse_ulonglong);
VTK_CREATE(vtkSparseArray<vtkTypeInt64>, sparse_longlong);
VTK_CREATE(vtkSparseArray<vtkIdType>, sparse_idtype);
#else
VTK_CREATE(vtkDenseArray<int>, dense_int);
VTK_CREATE(vtkDenseArray<double>, dense_double);
VTK_CREATE(vtkDenseArray<vtkStdString>, dense_string);
VTK_CREATE(vtkSparseArray<int>, sparse_int);
VTK_CREATE(vtkSparseArray<double>, sparse_double);
VTK_CREATE(vtkSparseArray<vtkStdString>, sparse_string);
#endif
SuccessTest<vtkTypedArray, vtkIntegerTypes>(dense_int, __LINE__);
FailTest<vtkTypedArray, vtkIntegerTypes>(dense_double, __LINE__);
FailTest<vtkTypedArray, vtkIntegerTypes>(dense_string, __LINE__);
SuccessTest<vtkTypedArray, vtkIntegerTypes>(sparse_int, __LINE__);
FailTest<vtkTypedArray, vtkIntegerTypes>(sparse_double, __LINE__);
FailTest<vtkTypedArray, vtkIntegerTypes>(sparse_string, __LINE__);
FailTest<vtkTypedArray, vtkFloatingPointTypes>(dense_int, __LINE__);
SuccessTest<vtkTypedArray, vtkFloatingPointTypes>(dense_double, __LINE__);
FailTest<vtkTypedArray, vtkFloatingPointTypes>(dense_string, __LINE__);
FailTest<vtkTypedArray, vtkFloatingPointTypes>(sparse_int, __LINE__);
SuccessTest<vtkTypedArray, vtkFloatingPointTypes>(sparse_double, __LINE__);
FailTest<vtkTypedArray, vtkFloatingPointTypes>(sparse_string, __LINE__);
SuccessTest<vtkTypedArray, vtkNumericTypes>(dense_int, __LINE__);
SuccessTest<vtkTypedArray, vtkNumericTypes>(dense_double, __LINE__);
FailTest<vtkTypedArray, vtkNumericTypes>(dense_string, __LINE__);
SuccessTest<vtkTypedArray, vtkNumericTypes>(sparse_int, __LINE__);
SuccessTest<vtkTypedArray, vtkNumericTypes>(sparse_double, __LINE__);
FailTest<vtkTypedArray, vtkNumericTypes>(sparse_string, __LINE__);
FailTest<vtkTypedArray, vtkStringTypes>(dense_int, __LINE__);
FailTest<vtkTypedArray, vtkStringTypes>(dense_double, __LINE__);
SuccessTest<vtkTypedArray, vtkStringTypes>(dense_string, __LINE__);
FailTest<vtkTypedArray, vtkStringTypes>(sparse_int, __LINE__);
FailTest<vtkTypedArray, vtkStringTypes>(sparse_double, __LINE__);
SuccessTest<vtkTypedArray, vtkStringTypes>(sparse_string, __LINE__);
SuccessTest<vtkTypedArray, vtkAllTypes>(dense_int, __LINE__);
SuccessTest<vtkTypedArray, vtkAllTypes>(dense_double, __LINE__);
SuccessTest<vtkTypedArray, vtkAllTypes>(dense_string, __LINE__);
SuccessTest<vtkTypedArray, vtkAllTypes>(sparse_int, __LINE__);
SuccessTest<vtkTypedArray, vtkAllTypes>(sparse_double, __LINE__);
SuccessTest<vtkTypedArray, vtkAllTypes>(sparse_string, __LINE__);
SuccessTest<vtkDenseArray, vtkAllTypes>(dense_int, __LINE__);
FailTest<vtkDenseArray, vtkAllTypes>(sparse_int, __LINE__);
FailTest<vtkSparseArray, vtkAllTypes>(dense_int, __LINE__);
SuccessTest<vtkSparseArray, vtkAllTypes>(sparse_int, __LINE__);
return 0;
}
catch(std::exception& e)
{
cerr << e.what() << endl;
return 1;
}
}
|