1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
|
/*=========================================================================
Program: Visualization Toolkit
Module: vtkAbstractArray.cxx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkAbstractArray.h"
#include "vtkBitArray.h"
#include "vtkCharArray.h"
#include "vtkDoubleArray.h"
#include "vtkFloatArray.h"
#include "vtkIdList.h"
#include "vtkIdTypeArray.h"
#include "vtkInformation.h"
#include "vtkIntArray.h"
#include "vtkLongArray.h"
#include "vtkLongLongArray.h"
#include "vtkMath.h"
#include "vtkMinimalStandardRandomSequence.h"
#include "vtkShortArray.h"
#include "vtkSignedCharArray.h"
#include "vtkStringArray.h"
#include "vtkUnicodeStringArray.h"
#include "vtkUnsignedCharArray.h"
#include "vtkUnsignedIntArray.h"
#include "vtkUnsignedLongArray.h"
#include "vtkUnsignedLongLongArray.h"
#include "vtkUnsignedShortArray.h"
#include "vtkVariantArray.h"
#include "vtkInformationVector.h"
#include "vtkInformationDoubleVectorKey.h"
#include "vtkInformationIntegerKey.h"
#include "vtkInformationInformationVectorKey.h"
#include "vtkInformationVariantVectorKey.h"
#include "vtkNew.h"
#include "vtkUnicodeString.h" // for vtkSuperExtraExtendedTemplateMacro
#include <algorithm>
#include <iterator>
#include <set>
#include <cmath>
vtkInformationKeyMacro(vtkAbstractArray, GUI_HIDE, Integer);
vtkInformationKeyMacro(vtkAbstractArray, PER_COMPONENT, InformationVector);
vtkInformationKeyMacro(vtkAbstractArray, DISCRETE_VALUES, VariantVector);
vtkInformationKeyRestrictedMacro(vtkAbstractArray, DISCRETE_VALUE_SAMPLE_PARAMETERS, DoubleVector, 2);
namespace
{
typedef std::vector< vtkStdString* > vtkInternalComponentNameBase;
}
class vtkAbstractArray::vtkInternalComponentNames : public vtkInternalComponentNameBase {};
//----------------------------------------------------------------------------
// Construct object with sane defaults.
vtkAbstractArray::vtkAbstractArray()
{
this->Size = 0;
this->MaxId = -1;
this->NumberOfComponents = 1;
this->Name = NULL;
this->RebuildArray = false;
this->Information = NULL;
this->ComponentNames = NULL;
this->MaxDiscreteValues = vtkAbstractArray::MAX_DISCRETE_VALUES; //32
}
//----------------------------------------------------------------------------
vtkAbstractArray::~vtkAbstractArray()
{
if ( this->ComponentNames )
{
for ( unsigned int i=0; i < this->ComponentNames->size(); ++i)
{
delete this->ComponentNames->at(i);
}
this->ComponentNames->clear();
delete this->ComponentNames;
this->ComponentNames = NULL;
}
this->SetName(NULL);
this->SetInformation(NULL);
}
//----------------------------------------------------------------------------
void vtkAbstractArray::SetComponentName( vtkIdType component, const char *name )
{
if ( component < 0 || name == NULL )
{
return;
}
unsigned int index = static_cast<unsigned int>( component );
if ( this->ComponentNames == NULL )
{
//delayed allocate
this->ComponentNames = new vtkAbstractArray::vtkInternalComponentNames();
}
if ( index == this->ComponentNames->size() )
{
//the array isn't large enough, so we will resize
this->ComponentNames->push_back( new vtkStdString(name) );
return;
}
else if ( index > this->ComponentNames->size() )
{
this->ComponentNames->resize( index+1, NULL );
}
//replace an exisiting element
vtkStdString *compName = this->ComponentNames->at(index);
if ( !compName )
{
compName = new vtkStdString(name);
this->ComponentNames->at(index) = compName;
}
else
{
compName->assign( name );
}
}
//----------------------------------------------------------------------------
const char* vtkAbstractArray::GetComponentName( vtkIdType component )
{
unsigned int index = static_cast<unsigned int>( component );
if ( !this->ComponentNames || component < 0 ||
index >= this->ComponentNames->size() )
{
//make sure we have valid vector
return NULL;
}
vtkStdString *compName = this->ComponentNames->at( index );
return ( compName ) ? compName->c_str() : NULL;
}
//----------------------------------------------------------------------------
bool vtkAbstractArray::HasAComponentName()
{
return (this->ComponentNames) ? ( this->ComponentNames->size() > 0 ) : 0;
}
//----------------------------------------------------------------------------
int vtkAbstractArray::CopyComponentNames( vtkAbstractArray *da )
{
if ( da && da != this && da->ComponentNames )
{
//clear the vector of the all data
if ( !this->ComponentNames )
{
this->ComponentNames = new vtkAbstractArray::vtkInternalComponentNames();
}
//copy the passed in components
for ( unsigned int i=0; i < this->ComponentNames->size(); ++i)
{
delete this->ComponentNames->at(i);
}
this->ComponentNames->clear();
this->ComponentNames->reserve( da->ComponentNames->size() );
const char *name;
for ( unsigned int i = 0; i < da->ComponentNames->size(); ++i )
{
name = da->GetComponentName(i);
if ( name )
{
this->SetComponentName(i, name);
}
}
return 1;
}
return 0;
}
//----------------------------------------------------------------------------
void vtkAbstractArray::SetNumberOfValues(vtkIdType numValues)
{
if (this->Resize(std::ceil(numValues /
static_cast<float>(this->NumberOfComponents))))
{
this->MaxId = numValues - 1;
}
}
//----------------------------------------------------------------------------
void vtkAbstractArray::SetInformation(vtkInformation *args)
{
// Same as in vtkCxxSetObjectMacro, but no Modified() so that
// this doesn't cause extra pipeline updates.
vtkDebugMacro(<< this->GetClassName() << " (" << this
<< "): setting Information to " << args );
if (this->Information != args)
{
vtkInformation* tempSGMacroVar = this->Information;
this->Information = args;
if (this->Information != NULL) { this->Information->Register(this); }
if (tempSGMacroVar != NULL)
{
tempSGMacroVar->UnRegister(this);
}
}
}
//----------------------------------------------------------------------------
void vtkAbstractArray::GetTuples(vtkIdList* tupleIds, vtkAbstractArray* aa)
{
if (aa->GetNumberOfComponents() != this->GetNumberOfComponents())
{
vtkWarningMacro("Number of components for input and output do not match.");
return;
}
// Here we give the slowest implementation. Subclasses can override
// to use the knowledge about the data.
vtkIdType num = tupleIds->GetNumberOfIds();
for (vtkIdType i = 0; i < num; i++)
{
aa->SetTuple(i, tupleIds->GetId(i), this);
}
}
//----------------------------------------------------------------------------
void vtkAbstractArray::GetTuples(vtkIdType p1, vtkIdType p2,
vtkAbstractArray* aa)
{
if (aa->GetNumberOfComponents() != this->GetNumberOfComponents())
{
vtkWarningMacro("Number of components for input and output do not match.");
return;
}
// Here we give the slowest implementation. Subclasses can override
// to use the knowledge about the data.
vtkIdType num = p2 - p1 + 1;
for (vtkIdType i = 0; i < num; i++)
{
aa->SetTuple(i, (p1+i), this);
}
}
//----------------------------------------------------------------------------
bool vtkAbstractArray::HasStandardMemoryLayout()
{
return true;
}
//----------------------------------------------------------------------------
void vtkAbstractArray::DeepCopy( vtkAbstractArray* da )
{
if (!da || da == this)
{
return;
}
if (da->HasInformation())
{
this->CopyInformation(da->GetInformation(),/*deep=*/1);
}
else
{
this->SetInformation(NULL);
}
this->SetName(da->Name);
this->CopyComponentNames( da );
}
//----------------------------------------------------------------------------
void vtkAbstractArray::ExportToVoidPointer(void *dest)
{
if (this->MaxId > 0 && this->GetDataTypeSize() > 0)
{
void *src = this->GetVoidPointer(0);
memcpy(dest, src, ((this->MaxId + 1) * this->GetDataTypeSize()));
}
}
//----------------------------------------------------------------------------
int vtkAbstractArray::CopyInformation(vtkInformation* infoFrom, int deep)
{
// Copy all keys. NOTE: subclasses rely on this.
vtkInformation* myInfo=this->GetInformation();
myInfo->Copy(infoFrom,deep);
// Remove any keys we own that are not to be copied here.
// For now, remove per-component metadata.
if (myInfo->Has(PER_COMPONENT()))
{
myInfo->Remove(PER_COMPONENT());
}
if (myInfo->Has(DISCRETE_VALUES()))
{
myInfo->Remove(DISCRETE_VALUES());
}
return 1;
}
//----------------------------------------------------------------------------
vtkInformation* vtkAbstractArray::GetInformation()
{
if ( ! this->Information )
{
vtkInformation* info = vtkInformation::New();
this->SetInformation( info );
info->FastDelete();
}
return this->Information;
}
//----------------------------------------------------------------------------
template <class T>
int vtkAbstractArrayGetDataTypeSize(T*)
{
return sizeof(T);
}
int vtkAbstractArray::GetDataTypeSize(int type)
{
switch (type)
{
vtkTemplateMacro(
return vtkAbstractArrayGetDataTypeSize(static_cast<VTK_TT*>(0))
);
case VTK_BIT:
case VTK_STRING:
case VTK_UNICODE_STRING:
return 0;
default:
vtkGenericWarningMacro(<<"Unsupported data type!");
}
return 1;
}
// ----------------------------------------------------------------------
vtkAbstractArray* vtkAbstractArray::CreateArray(int dataType)
{
switch (dataType)
{
case VTK_BIT:
return vtkBitArray::New();
case VTK_CHAR:
return vtkCharArray::New();
case VTK_SIGNED_CHAR:
return vtkSignedCharArray::New();
case VTK_UNSIGNED_CHAR:
return vtkUnsignedCharArray::New();
case VTK_SHORT:
return vtkShortArray::New();
case VTK_UNSIGNED_SHORT:
return vtkUnsignedShortArray::New();
case VTK_INT:
return vtkIntArray::New();
case VTK_UNSIGNED_INT:
return vtkUnsignedIntArray::New();
case VTK_LONG:
return vtkLongArray::New();
case VTK_UNSIGNED_LONG:
return vtkUnsignedLongArray::New();
case VTK_LONG_LONG:
return vtkLongLongArray::New();
case VTK_UNSIGNED_LONG_LONG:
return vtkUnsignedLongLongArray::New();
case VTK_FLOAT:
return vtkFloatArray::New();
case VTK_DOUBLE:
return vtkDoubleArray::New();
case VTK_ID_TYPE:
return vtkIdTypeArray::New();
case VTK_STRING:
return vtkStringArray::New();
case VTK_UNICODE_STRING:
return vtkUnicodeStringArray::New();
case VTK_VARIANT:
return vtkVariantArray::New();
default:
break;
}
vtkGenericWarningMacro("Unsupported data type: " << dataType
<< "! Setting to VTK_DOUBLE");
return vtkDoubleArray::New();
}
//---------------------------------------------------------------------------
template <typename T>
vtkVariant vtkAbstractArrayGetVariantValue(T* arr, vtkIdType index)
{
return vtkVariant(arr[index]);
}
//----------------------------------------------------------------------------
vtkVariant vtkAbstractArray::GetVariantValue(vtkIdType valueIdx)
{
vtkVariant val;
switch(this->GetDataType())
{
vtkExtraExtendedTemplateMacro(val = vtkAbstractArrayGetVariantValue(
static_cast<VTK_TT*>(this->GetVoidPointer(0)), valueIdx));
}
return val;
}
//----------------------------------------------------------------------------
void vtkAbstractArray::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os,indent);
const char* name = this->GetName();
if (name)
{
os << indent << "Name: " << name << "\n";
}
else
{
os << indent << "Name: (none)\n";
}
os << indent << "Data type: " << this->GetDataTypeAsString() << "\n";
os << indent << "Size: " << this->Size << "\n";
os << indent << "MaxId: " << this->MaxId << "\n";
os << indent << "NumberOfComponents: " << this->NumberOfComponents << endl;
if ( this->ComponentNames )
{
os << indent << "ComponentNames: " << endl;
vtkIndent nextIndent = indent.GetNextIndent();
for ( unsigned int i=0; i < this->ComponentNames->size(); ++i )
{
os << nextIndent << i << " : " << this->ComponentNames->at(i) << endl;
}
}
os << indent << "Information: " << this->Information << endl;
if ( this->Information )
{
this->Information->PrintSelf( os, indent.GetNextIndent() );
}
}
//--------------------------------------------------------------------------
void vtkAbstractArray::GetProminentComponentValues(
int comp, vtkVariantArray* values,
double uncertainty, double minimumProminence)
{
if (!values || comp < -1 || comp >= this->NumberOfComponents)
{
return;
}
values->Initialize();
values->SetNumberOfComponents(comp < 0 ? this->NumberOfComponents : 1);
bool justCreated = false;
vtkInformation* info = this->GetInformation();
const double* lastParams = info ?
(info->Has(DISCRETE_VALUE_SAMPLE_PARAMETERS()) ?
info->Get(DISCRETE_VALUE_SAMPLE_PARAMETERS()) : 0) : 0;
if (comp >= 0 && info)
{
vtkInformationVector* infoVec = info->Get(PER_COMPONENT());
if (!infoVec ||
infoVec->GetNumberOfInformationObjects() < this->NumberOfComponents)
{
infoVec = vtkInformationVector::New();
infoVec->SetNumberOfInformationObjects(this->NumberOfComponents);
info->Set(PER_COMPONENT(), infoVec);
infoVec->FastDelete();
justCreated = true;
}
info = infoVec->GetInformationObject(comp);
}
if (info)
{
// Any insane parameter values map to
// deterministic, exhaustive enumeration of all
// distinct values:
if (uncertainty < 0. || uncertainty > 1.)
{
uncertainty = 0.;
}
if (minimumProminence < 0. || minimumProminence > 1.)
{
minimumProminence = 0.;
}
// Are parameter values requesting more certainty in reporting or
// that less-prominent values be reported? If so, recompute.
bool tighterParams = lastParams ?
(lastParams[0] > uncertainty ||
lastParams[1] > minimumProminence ?
true :
false)
: true;
// Recompute discrete value set when the array has been
// modified since the information was written.
if (
!info->Has(DISCRETE_VALUES()) || tighterParams ||
this->GetMTime() > info->GetMTime() || justCreated)
{
this->UpdateDiscreteValueSet(uncertainty, minimumProminence);
}
}
else
{
return;
}
vtkIdType len;
const vtkVariant* vals = info->Get(DISCRETE_VALUES());
if (vals != NULL)
{
len = info->Length(DISCRETE_VALUES());
values->SetNumberOfTuples(len / values->GetNumberOfComponents());
for (vtkIdType i = 0; i < len; ++i)
{
values->SetVariantValue(i, vals[i]);
}
}
}
//-----------------------------------------------------------------------------
namespace
{
template<typename T>
bool AccumulateSampleValues(
T* array, int nc, vtkIdType begin, vtkIdType end,
std::vector<std::set<T> >& uniques, std::set<std::vector<T> >& tupleUniques,
unsigned int maxDiscreteValues)
{
// number of discrete components remaining (tracked during iteration):
int ndc = nc;
std::pair<typename std::set<T>::iterator,bool> result;
std::pair<typename std::set<std::vector<T> >::iterator,bool> tresult;
std::vector<T> tuple;
tuple.resize(nc);
// Here we iterate over the components and add to their respective lists
// of previously encountered values -- as long as there are not too many
// values already in the list. We also accumulate each component's value
// into a vtkVariantArray named tuple, which is added to the list of
// unique vectors -- again assuming it is not already too long.
for (vtkIdType i = begin; i < end && ndc; ++i)
{
// First, attempt a per-component insert.
for (int j = 0; j < nc; ++ j)
{
if (uniques[j].size() > maxDiscreteValues)
continue;
T& val(array[i * nc + j]);
tuple[j] = val;
result = uniques[j].insert(val);
if (result.second)
{
if (uniques[j].size() == maxDiscreteValues + 1)
{
-- ndc;
}
}
}
// Now, as long as no component has exceeded maxDiscreteValues unique
// values, it is worth seeing whether the tuple as a whole is unique:
if ( nc > 1 && ndc == nc )
{
tresult = tupleUniques.insert(tuple);
(void)tresult; // nice to have when debugging.
}
}
return ndc == 0;
}
//-----------------------------------------------------------------------------
template<typename U>
void SampleProminentValues(
std::vector<std::vector<vtkVariant> >& uniques, vtkIdType maxId,
int nc, vtkIdType nt, int blockSize, vtkIdType numberOfBlocks, U* ptr,
unsigned int maxDiscreteValues)
{
std::vector<std::set<U> > typeSpecificUniques;
std::set<std::vector<U> > typeSpecificUniqueTuples;
typeSpecificUniques.resize(nc);
// I. Accumulate samples for all components plus the tuple,
// either for the full array or a random subset.
if (numberOfBlocks * blockSize > maxId / 2)
{ // Awwww, just do the whole array already!
AccumulateSampleValues(
ptr, nc, 0, nt,
typeSpecificUniques, typeSpecificUniqueTuples, maxDiscreteValues);
}
else
{ // Choose random blocks
vtkNew<vtkMinimalStandardRandomSequence> seq;
// test different blocks each time we're called:
seq->SetSeed(static_cast<int>(seq->GetMTime()) ^ 0xdeadbeef);
vtkIdType totalBlockCount =
nt / blockSize +
(nt % blockSize ? 1 : 0);
std::set<vtkIdType> startTuples;
// Sort the list of blocks we'll search to maintain cache coherence.
for (int i = 0; i < numberOfBlocks; ++ i, seq->Next())
{
vtkIdType startTuple =
static_cast<vtkIdType>(seq->GetValue() * totalBlockCount) * blockSize;
startTuples.insert(startTuple);
}
// Now iterate over the blocks, accumulating unique values and tuples.
std::set<vtkIdType>::iterator blkIt;
for (blkIt = startTuples.begin(); blkIt != startTuples.end(); ++blkIt)
{
vtkIdType startTuple = *blkIt;
vtkIdType endTuple = startTuple + blockSize;
endTuple = endTuple < nt ? endTuple : nt;
bool endEarly = AccumulateSampleValues(
ptr, nc, startTuple, endTuple,
typeSpecificUniques, typeSpecificUniqueTuples, maxDiscreteValues);
if (endEarly)
break;
}
}
// II. Convert type-specific sets of unique values into non-type-specific
// vectors of vtkVariants for storage in array information.
// Handle per-component uniques first
for (int i = 0; i < nc; ++i)
{
std::back_insert_iterator<std::vector<vtkVariant> > bi(uniques[i]);
std::copy(typeSpecificUniques[i].begin(), typeSpecificUniques[i].end(), bi);
}
// Now squash any tuple-wide uniques into
// the final entry of the outer vector.
typename std::set<std::vector<U> >::iterator si;
for (
si = typeSpecificUniqueTuples.begin();
si != typeSpecificUniqueTuples.end();
++si)
{
std::back_insert_iterator<std::vector<vtkVariant> > bi(uniques[nc]);
std::copy(si->begin(), si->end(), bi);
}
}
} // End anonymous namespace.
//-----------------------------------------------------------------------------
void vtkAbstractArray::UpdateDiscreteValueSet(
double uncertainty, double minimumProminence)
{
// For an array with T tuples and given uncertainty U and mininumum
// prominence P, we sample N blocks of M tuples each, with
// M*N = f(T; P, U) and f some sublinear function of T.
// If every component plus all components taken together each have more than
// MaxDiscreteValues distinct values, then we exit early.
// M is chosen based on the number of bytes per tuple to maximize use of a
// cache line (assuming a 64-byte cache line until kwsys::SystemInformation
// or the like can provide a platform-independent way to query it).
//
// N is chosen to satisfy the requested uncertainty and prominence criteria
// specified.
#define VTK_CACHE_LINE_SIZE 64
#define VTK_SAMPLE_FACTOR 5
// I. Determine the granularity at which the array should be sampled.
int numberOfComponentsWithProminentValues = 0;
int nc = this->NumberOfComponents;
int blockSize = VTK_CACHE_LINE_SIZE / (this->GetDataTypeSize() * nc);
if (!blockSize) blockSize = 4;
double logfac = 1.;
vtkIdType nt = this->GetNumberOfTuples();
if (this->MaxId > 0)
{
logfac = -log(uncertainty * minimumProminence) / minimumProminence;
if (logfac < 0)
{
logfac = -logfac;
}
}
vtkIdType numberOfSampleTuples;
if (vtkMath::IsInf(logfac))
{
numberOfSampleTuples = nt;
}
else
{
numberOfSampleTuples = static_cast<vtkIdType>(VTK_SAMPLE_FACTOR * logfac);
}
/*
// Theoretically, we should discard values or tuples that recur fewer
// than minFreq times in our sample, but in practice this involves
// counting and communication that slow us down.
vtkIdType minFreq = static_cast<vtkIdType>(
numberOfSampleTuples * minimumProminence / 2);
*/
vtkIdType numberOfBlocks =
numberOfSampleTuples / blockSize +
(numberOfSampleTuples % blockSize ? 1 : 0);
if (static_cast<unsigned int>(numberOfBlocks * blockSize) <
2 * this->MaxDiscreteValues)
{
numberOfBlocks =
2 * this->MaxDiscreteValues / blockSize +
(2 * this->MaxDiscreteValues % blockSize ? 1 : 0);
}
// II. Sample the array.
std::vector<std::vector<vtkVariant> > uniques(nc > 1 ? nc + 1 : nc);
switch(this->GetDataType())
{
vtkSuperExtraExtendedTemplateMacro(
SampleProminentValues(
uniques, this->MaxId, nc, nt, blockSize, numberOfBlocks,
static_cast<VTK_TT*>(this->GetVoidPointer(0)),
this->MaxDiscreteValues));
default:
vtkErrorMacro("Array type " << this->GetClassName() << " not supported.");
break;
}
// III. Store the results in the array's vtkInformation.
int c;
vtkInformationVector* iv;
for (c = 0; c < nc; ++c)
{
if (uniques[c].size() <= this->MaxDiscreteValues)
{
++ numberOfComponentsWithProminentValues;
iv = this->GetInformation()->Get(PER_COMPONENT());
if (!iv)
{
vtkNew<vtkInformationVector> infoVec;
infoVec->SetNumberOfInformationObjects(this->NumberOfComponents);
this->GetInformation()->Set(PER_COMPONENT(), infoVec.GetPointer());
iv = this->GetInformation()->Get(PER_COMPONENT());
}
iv->GetInformationObject(c)->Set(
DISCRETE_VALUES(), &uniques[c][0],
static_cast<int>(uniques[c].size()));
}
else
{
iv = this->GetInformation()->Get(PER_COMPONENT());
if (iv)
{
iv->GetInformationObject(c)->Remove(
DISCRETE_VALUES());
}
}
}
if (nc > 1 &&
uniques[nc].size() <= this->MaxDiscreteValues * nc)
{
++ numberOfComponentsWithProminentValues;
this->GetInformation()->Set(
DISCRETE_VALUES(), &uniques[nc][0],
static_cast<int>(uniques[nc].size()));
}
else
{ // Remove the key
this->GetInformation()->Remove(DISCRETE_VALUES());
}
// Always store the sample parameters; this lets us know not to
// re-run the sampling algorithm.
double params[2];
params[0] = uncertainty;
params[1] = minimumProminence;
this->GetInformation()->Set(
DISCRETE_VALUE_SAMPLE_PARAMETERS(), params, 2);
}
|