1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
|
#include "vtkConditionVariable.h"
#include "vtkObjectFactory.h"
#include <errno.h>
vtkStandardNewMacro(vtkConditionVariable);
#ifndef EPERM
# define EPERM 1
#endif
#ifndef ENOMEM
# define ENOMEM 12
#endif
#ifndef EBUSY
# define EBUSY 16
#endif
#ifndef EINVAL
# define EINVAL 22
#endif
#ifndef EAGAIN
# define EAGAIN 35
#endif
#if ! defined(VTK_USE_PTHREADS) && ! defined(VTK_HP_PTHREADS) && ! defined(VTK_USE_WIN32_THREADS)
// Why is this encapsulated in a namespace? Because you can get errors if
// these symbols (particularly the typedef) are already defined. We run
// into this problem on a system that has pthread headers but no libraries
// (which can happen when, for example, cross compiling). By using the
// namespace, we will at worst get a warning.
namespace {
typedef int pthread_condattr_t;
int pthread_cond_init( vtkConditionType* cv, const pthread_condattr_t* )
{
*cv = 0;
return 0;
}
int pthread_cond_destroy( vtkConditionType* cv )
{
if ( *cv )
return EBUSY;
return 0;
}
int pthread_cond_signal( vtkConditionType* cv )
{
*cv = 1;
return 0;
}
int pthread_cond_broadcast( vtkConditionType* cv )
{
*cv = 1;
return 0;
}
int pthread_cond_wait( vtkConditionType* cv, vtkMutexType* lock )
{
#ifdef VTK_USE_SPROC
release_lock( lock );
#else // VTK_USE_SPROC
*lock = 0;
#endif // VTK_USE_SPROC
while ( ! *cv );
#ifdef VTK_USE_SPROC
spin_lock( lock );
#else // VTK_USE_SPROC
*lock = 1;
#endif // VTK_USE_SPROC
return 0;
}
}
#endif // ! defined(VTK_USE_PTHREADS) && ! defined(VTK_HP_PTHREADS) && ! defined(VTK_USE_WIN32_THREADS)
#ifdef VTK_USE_WIN32_THREADS
typedef int pthread_condattr_t;
# if 1
int pthread_cond_init( pthread_cond_t* cv, const pthread_condattr_t* )
{
cv->WaitingThreadCount = 0;
cv->WasBroadcast = 0;
cv->Semaphore = CreateSemaphore(
NULL, // no security
0, // initially 0
0x7fffffff, // max count
NULL ); // unnamed
InitializeCriticalSection( &cv->WaitingThreadCountCritSec );
cv->DoneWaiting = CreateEvent(
NULL, // no security
FALSE, // auto-reset
FALSE, // non-signaled initially
NULL ); // unnamed
return 0;
}
int pthread_cond_wait( pthread_cond_t* cv, vtkMutexType* externalMutex )
{
// Avoid race conditions.
EnterCriticalSection( &cv->WaitingThreadCountCritSec );
++ cv->WaitingThreadCount;
LeaveCriticalSection( &cv->WaitingThreadCountCritSec );
// This call atomically releases the mutex and waits on the
// semaphore until <pthread_cond_signal> or <pthread_cond_broadcast>
// are called by another thread.
SignalObjectAndWait( *externalMutex, cv->Semaphore, INFINITE, FALSE );
// Reacquire lock to avoid race conditions.
EnterCriticalSection( &cv->WaitingThreadCountCritSec );
// We're no longer waiting...
-- cv->WaitingThreadCount;
// Check to see if we're the last waiter after <pthread_cond_broadcast>.
int last_waiter = cv->WasBroadcast && cv->WaitingThreadCount == 0;
LeaveCriticalSection( &cv->WaitingThreadCountCritSec );
// If we're the last waiter thread during this particular broadcast
// then let all the other threads proceed.
if ( last_waiter )
{
// This call atomically signals the <DoneWaiting> event and waits until
// it can acquire the <externalMutex>. This is required to ensure fairness.
SignalObjectAndWait( cv->DoneWaiting, *externalMutex, INFINITE, FALSE );
}
else
{
// Always regain the external mutex since that's the guarantee we
// give to our callers.
WaitForSingleObject( *externalMutex, INFINITE );
}
return 0;
}
int pthread_cond_signal( pthread_cond_t* cv )
{
EnterCriticalSection( &cv->WaitingThreadCountCritSec );
int have_waiters = cv->WaitingThreadCount > 0;
LeaveCriticalSection( &cv->WaitingThreadCountCritSec );
// If there aren't any waiters, then this is a no-op.
if ( have_waiters )
{
ReleaseSemaphore( cv->Semaphore, 1, 0 );
}
return 0;
}
int pthread_cond_broadcast( pthread_cond_t* cv )
{
// This is needed to ensure that <WaitingThreadCount> and <WasBroadcast> are
// consistent relative to each other.
EnterCriticalSection( &cv->WaitingThreadCountCritSec );
int have_waiters = 0;
if ( cv->WaitingThreadCount > 0 )
{
// We are broadcasting, even if there is just one waiter...
// Record that we are broadcasting, which helps optimize
// pthread_cond_wait for the non-broadcast case.
cv->WasBroadcast = 1;
have_waiters = 1;
}
if (have_waiters)
{
// Wake up all the waiters atomically.
ReleaseSemaphore( cv->Semaphore, cv->WaitingThreadCount, 0 );
LeaveCriticalSection( &cv->WaitingThreadCountCritSec );
// Wait for all the awakened threads to acquire the counting semaphore.
WaitForSingleObject( cv->DoneWaiting, INFINITE );
// This assignment is okay, even without the <WaitingThreadCountCritSec> held
// because no other waiter threads can wake up to access it.
cv->WasBroadcast = 0;
}
else
{
LeaveCriticalSection( &cv->WaitingThreadCountCritSec );
}
return 0;
}
int pthread_cond_destroy( pthread_cond_t* cv )
{
DeleteCriticalSection( &cv->WaitingThreadCountCritSec );
CloseHandle( cv->Semaphore );
//CloseHandle( cv->Event );
if ( cv->WaitingThreadCount > 0 && ! cv->DoneWaiting )
{
return EBUSY;
}
return 0;
}
# else // 0
int pthread_cond_init( pthread_cond_t* cv, const pthread_condattr_t * )
{
if ( ! cv )
{
return EINVAL;
}
cv->WaitingThreadCount = 0;
cv->NotifyCount = 0;
cv->ReleaseCount = 0;
// Create a manual-reset event.
cv->Event = CreateEvent(
NULL, // no security
TRUE, // manual-reset
FALSE, // non-signaled initially
NULL ); // unnamed
InitializeCriticalSection( &cv->WaitingThreadCountCritSec );
return 0;
}
int pthread_cond_wait( pthread_cond_t* cv, vtkMutexType* externalMutex )
{
// Avoid race conditions.
EnterCriticalSection( &cv->WaitingThreadCountCritSec );
// Increment count of waiters.
++ cv->WaitingThreadCount;
// Store the notification we should respond to.
int tmpNotify = cv->NotifyCount;
LeaveCriticalSection( &cv->WaitingThreadCountCritSec );
ReleaseMutex( *externalMutex );
while ( 1 )
{
// Wait until the event is signaled.
WaitForSingleObject( cv->Event, INFINITE );
EnterCriticalSection( &cv->WaitingThreadCountCritSec );
// Exit the loop when cv->Event is signaled, the
// release count indicates more threads need to receive
// the signal/broadcast, and the signal occurred after
// we started waiting.
int waitDone =
( cv->ReleaseCount > 0 ) &&
( cv->NotifyCount != tmpNotify );
LeaveCriticalSection( &cv->WaitingThreadCountCritSec );
if ( waitDone )
break;
}
WaitForSingleObject( *externalMutex, INFINITE );
EnterCriticalSection( &cv->WaitingThreadCountCritSec );
-- cv->WaitingThreadCount;
-- cv->ReleaseCount;
int lastWaiter = ( cv->ReleaseCount == 0 );
LeaveCriticalSection( &cv->WaitingThreadCountCritSec );
// If we're the last waiter to be notified, reset the manual event.
if ( lastWaiter )
ResetEvent( cv->Event );
return 0;
}
int pthread_cond_signal( pthread_cond_t* cv )
{
EnterCriticalSection( &cv->WaitingThreadCountCritSec );
if ( cv->WaitingThreadCount > cv->ReleaseCount )
{
SetEvent( cv->Event ); // Signal the manual-reset event.
++ cv->ReleaseCount;
++ cv->NotifyCount;
}
LeaveCriticalSection( &cv->WaitingThreadCountCritSec );
return 0;
}
int pthread_cond_broadcast( pthread_cond_t* cv )
{
EnterCriticalSection( &cv->WaitingThreadCountCritSec );
if ( cv->WaitingThreadCount > 0 )
{
SetEvent( cv->Event );
// Release all the threads in this generation.
cv->ReleaseCount = cv->WaitingThreadCount;
++ cv->NotifyCount;
}
LeaveCriticalSection( &cv->WaitingThreadCountCritSec );
return 0;
}
int pthread_cond_destroy( pthread_cond_t* cv )
{
if ( cv->WaitingThreadCount > 0 )
{
return EBUSY;
}
CloseHandle( cv->Event );
DeleteCriticalSection( &cv->WaitingThreadCountCritSec );
return 0;
}
# endif // 0
#endif // VTK_USE_WIN32_THREADS
vtkSimpleConditionVariable::vtkSimpleConditionVariable()
{
int result = pthread_cond_init( &this->ConditionVariable, 0 );
switch ( result )
{
case EINVAL:
{
vtkGenericWarningMacro( "Invalid condition variable attributes." );
}
break;
case ENOMEM:
{
vtkGenericWarningMacro( "Not enough memory to create a condition variable." );
}
break;
case EAGAIN:
{
vtkGenericWarningMacro( "Temporarily not enough memory to create a condition variable." );
}
break;
}
}
vtkSimpleConditionVariable::~vtkSimpleConditionVariable()
{
int result = pthread_cond_destroy( &this->ConditionVariable );
switch ( result )
{
case EINVAL:
{
vtkGenericWarningMacro( "Could not destroy condition variable (invalid value)" );
}
break;
case EBUSY:
{
vtkGenericWarningMacro( "Could not destroy condition variable (locked by another thread)" );
}
break;
}
}
void vtkSimpleConditionVariable::Signal()
{
pthread_cond_signal( &this->ConditionVariable );
}
void vtkSimpleConditionVariable::Broadcast()
{
pthread_cond_broadcast( &this->ConditionVariable );
}
int vtkSimpleConditionVariable::Wait( vtkSimpleMutexLock& lock )
{
return pthread_cond_wait( &this->ConditionVariable, &lock.MutexLock );
}
void vtkConditionVariable::PrintSelf( ostream& os, vtkIndent indent )
{
this->Superclass::PrintSelf( os, indent );
os << indent << "SimpleConditionVariable: " << &this->SimpleConditionVariable << "\n";
os << indent << "ThreadingModel: "
#ifdef VTK_USE_PTHREADS
<< "pthreads "
#endif
#ifdef VTK_HP_PTHREADS
<< "HP pthreads "
#endif
#ifdef VTK_USE_WIN32_THREADS
<< "win32 threads "
#endif
<< "\n";
}
|