1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
|
/*=========================================================================
Program: Visualization Toolkit
Module: vtkDataArrayPrivate.txx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#ifndef vtkDataArrayPrivate_txx
#define vtkDataArrayPrivate_txx
#include "vtkAssume.h"
#include "vtkDataArray.h"
#include "vtkDataArrayAccessor.h"
#include "vtkTypeTraits.h"
#include <algorithm>
#include <cassert> // for assert()
namespace vtkDataArrayPrivate
{
#if defined(_MSC_VER) && ( _MSC_VER < 2000 )
namespace msvc
{
//----------------------------------------------------------------------------
// Those min and max functions replace std ones because their
// implementation used to generate very slow code with MSVC.
// See https://randomascii.wordpress.com/2013/11/24/stdmin-causing-three-times-slowdown-on-vc/
// The comparison expression in min/max are written so that if the "condition" is false,
// the "left" value is returned. This is consistent with STL's implementations
// and also handles the cases where the right value may be a NaN properly.
// All code using these methods should ensure that the "left" value is never
// NaN.
// We use _MSC_VER < 2000 instead of 1900 not due to performance issues, but
// because MSVC 2015 (_MSC_VER=1900) doesn't handle NaNs properly in optimized
// builds.
template <class ValueType>
ValueType max(const ValueType& left, const ValueType& right)
{
return right > left ? right : left;
}
template <class ValueType>
ValueType min(const ValueType& left, const ValueType& right)
{
return right <= left ? right : left;
}
}
#endif
namespace detail
{
#if defined(_MSC_VER) && ( _MSC_VER < 2000 )
using msvc::min;
using msvc::max;
#else
using std::min;
using std::max;
#endif
}
//----------------------------------------------------------------------------
template <class APIType, int NumComps, int RangeSize>
struct ComputeScalarRange
{
template<class ArrayT>
bool operator()(ArrayT *array, double *ranges)
{
VTK_ASSUME(array->GetNumberOfComponents() == NumComps);
vtkDataArrayAccessor<ArrayT> access(array);
APIType tempRange[RangeSize];
for(int i = 0, j = 0; i < NumComps; ++i, j+=2)
{
tempRange[j] = vtkTypeTraits<APIType>::Max();
tempRange[j+1] = vtkTypeTraits<APIType>::Min();
}
//compute the range for each component of the data array at the same time
const vtkIdType numTuples = array->GetNumberOfTuples();
for(vtkIdType tupleIdx = 0; tupleIdx < numTuples; ++tupleIdx)
{
for(int compIdx = 0, j = 0; compIdx < NumComps; ++compIdx, j+=2)
{
tempRange[j] = detail::min(tempRange[j],
access.Get(tupleIdx, compIdx));
tempRange[j+1] = detail::max(tempRange[j+1],
access.Get(tupleIdx, compIdx));
}
}
//convert the range to doubles
for (int i = 0, j = 0; i < NumComps; ++i, j+=2)
{
ranges[j] = static_cast<double>(tempRange[j]);
ranges[j+1] = static_cast<double>(tempRange[j+1]);
}
return true;
}
};
//----------------------------------------------------------------------------
template <typename ArrayT>
bool DoComputeScalarRange(ArrayT *array, double *ranges)
{
vtkDataArrayAccessor<ArrayT> access(array);
typedef typename vtkDataArrayAccessor<ArrayT>::APIType APIType;
const vtkIdType numTuples = array->GetNumberOfTuples();
const int numComp = array->GetNumberOfComponents();
//setup the initial ranges to be the max,min for double
for (int i = 0, j = 0; i < numComp; ++i, j+=2)
{
ranges[j] = vtkTypeTraits<double>::Max();
ranges[j+1] = vtkTypeTraits<double>::Min();
}
//do this after we make sure range is max to min
if (numTuples == 0)
{
return false;
}
//Special case for single value scalar range. This is done to help the
//compiler detect it can perform loop optimizations.
if (numComp == 1)
{
return ComputeScalarRange<APIType,1,2>()(array, ranges);
}
else if (numComp == 2)
{
return ComputeScalarRange<APIType,2,4>()(array, ranges);
}
else if (numComp == 3)
{
return ComputeScalarRange<APIType,3,6>()(array, ranges);
}
else if (numComp == 4)
{
return ComputeScalarRange<APIType,4,8>()(array, ranges);
}
else if (numComp == 5)
{
return ComputeScalarRange<APIType,5,10>()(array, ranges);
}
else if (numComp == 6)
{
return ComputeScalarRange<APIType,6,12>()(array, ranges);
}
else if (numComp == 7)
{
return ComputeScalarRange<APIType,7,14>()(array, ranges);
}
else if (numComp == 8)
{
return ComputeScalarRange<APIType,8,16>()(array, ranges);
}
else if (numComp == 9)
{
return ComputeScalarRange<APIType,9,18>()(array, ranges);
}
else
{
//initialize the temp range storage to min/max pairs
APIType* tempRange = new APIType[numComp*2];
for (int i = 0, j = 0; i < numComp; ++i, j+=2)
{
tempRange[j] = vtkTypeTraits<APIType>::Max();
tempRange[j+1] = vtkTypeTraits<APIType>::Min();
}
//compute the range for each component of the data array at the same time
for (vtkIdType tupleIdx = 0; tupleIdx < numTuples; ++tupleIdx)
{
for(int compIdx = 0, j = 0; compIdx < numComp; ++compIdx, j+=2)
{
tempRange[j] = detail::min(tempRange[j],
access.Get(tupleIdx, compIdx));
tempRange[j+1] = detail::max(tempRange[j+1],
access.Get(tupleIdx, compIdx));
}
}
//convert the range to doubles
for (int i = 0, j = 0; i < numComp; ++i, j+=2)
{
ranges[j] = static_cast<double>(tempRange[j]);
ranges[j+1] = static_cast<double>(tempRange[j+1]);
}
//cleanup temp range storage
delete[] tempRange;
return true;
}
}
//----------------------------------------------------------------------------
template <typename ArrayT>
bool DoComputeVectorRange(ArrayT *array, double range[2])
{
vtkDataArrayAccessor<ArrayT> access(array);
const vtkIdType numTuples = array->GetNumberOfTuples();
const int numComps = array->GetNumberOfComponents();
range[0] = vtkTypeTraits<double>::Max();
range[1] = vtkTypeTraits<double>::Min();
//do this after we make sure range is max to min
if (numTuples == 0)
{
return false;
}
//iterate over all the tuples
for (vtkIdType tupleIdx = 0; tupleIdx < numTuples; ++tupleIdx)
{
double squaredSum = 0.0;
for (int compIdx = 0; compIdx < numComps; ++compIdx)
{
const double t = static_cast<double>(access.Get(tupleIdx, compIdx));
squaredSum += t * t;
}
range[0] = detail::min(range[0], squaredSum);
range[1] = detail::max(range[1], squaredSum);
}
//now that we have computed the smallest and largest value, take the
//square root of that value.
range[0] = sqrt(range[0]);
range[1] = sqrt(range[1]);
return true;
}
} // end namespace vtkDataArrayPrivate
#endif
// VTK-HeaderTest-Exclude: vtkDataArrayPrivate.txx
|