1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
|
/*=========================================================================
Copyright (c) Kitware Inc.
All rights reserved.
=========================================================================*/
// .SECTION Description
// This program illustrates the use of various filters acting upon hyper
// tree grid data sets. It generates output files in VTK format.
//
// .SECTION Usage
// --branch-factor opt Branching factor of hyper tree grid
// --dimension opt Dimension of hyper tree grid
// --grid-size-X opt Size of hyper tree grid in X direction
// --grid-size-Y opt Size of hyper tree grid in Y direction
// --grid-size-Z opt Size of hyper tree grid in Z direction
// --descriptor String of characters specifying tree structure
// --max-level opt Maximum depth of hyper tree grid
// --contours Number of iso-contours to be calculated
// --skip-Axis-Cut Skip axis cut filter
// --skip-Contour Skip contour filter
// --skip-Cut Skip cut filter
// --skip-Geometry Skip geometry filter
// --skip-Shrink Skip shrink filter
//
// .SECTION Thanks
// This example was written by Philippe Pebay and Charles Law, Kitware 2012
// This work was supported in part by Commissariat a l'Energie Atomique (CEA/DIF)
#include "vtkHyperTreeGrid.h"
#include "vtkHyperTreeGridAxisCut.h"
#include "vtkHyperTreeGridSource.h"
#include "vtkHyperTreeGridGeometry.h"
#include "vtkContourFilter.h"
#include "vtkCutter.h"
#include "vtkDataSetWriter.h"
#include "vtkMath.h"
#include "vtkNew.h"
#include "vtkPlane.h"
#include "vtkPointData.h"
#include "vtkPolyDataWriter.h"
#include "vtkShrinkFilter.h"
#include "vtkStdString.h"
#include "vtkTimerLog.h"
#include "vtkUnstructuredGrid.h"
#include "vtkUnstructuredGridWriter.h"
#include "vtksys/CommandLineArguments.hxx"
#include <sstream>
void SetInputParameters( int& dim,
int& branch,
int& nX,
int& nY,
int& nZ,
int max,
vtkStdString& str )
{
// Ensure that parsed dimensionality makes sense
if ( dim > 3 )
{
dim = 3;
}
else if ( dim < 1 )
{
dim = 1;
}
// Ensure that parsed branch factor makes sense
if ( branch > 3 )
{
branch = 3;
}
else if ( branch < 2 )
{
branch = 2;
}
// Ensure that parsed grid sizes make sense
if ( nX < 1 )
{
nX = 1;
}
if ( nY < 1 )
{
nY = 1;
}
if ( nZ < 1 )
{
nZ = 1;
}
// Ensure that parsed grid sizes are consistent with dimensionality
if ( dim < 3 )
{
nZ = 1;
if ( dim < 2 )
{
nY = 1;
}
}
// Ensure that maximum level makes sense
if ( max < 1 )
{
max = 1;
}
// Generate a descriptor if none was provided
if ( str = "" )
{
// Calculate refined block size
int blockSize = branch;
for ( int i = 1; i < dim; ++ i )
{
blockSize *= branch;
}
// Initialize character stream
std::ostringstream stream;
// Seed random number generator
vtkMath::RandomSeed( static_cast<int>( vtkTimerLog::GetUniversalTime() ) );
// Initialize per-level cardinality
int cardLevel = nX * nY * nZ;
// Iterate over refinement levels
for ( int l = 0; l < max - 1; ++ l )
{
// Initialize counters for this level
int nRefined = 0;
int nLeaves = 0;
// Insert separator if not first level
if ( l )
{
stream << '|';
}
// Iterate over entries in this level
for ( int i = 0; i < cardLevel; ++ i )
{
// Generate next character based on pseudo-random clause
double u = vtkMath::Random();
if ( u < .3 )
{
// Refined cell
stream << 'R';
++ nRefined;
} // if ( u < .1 )
else
{
// Leaf cell
stream << '.';
++ nLeaves;
} // else
} // i
// Update cardinality for next level
cardLevel = nRefined * blockSize;
} // l
// Last level contains only leaf cells
if ( max > 1 )
{
// Insert separator if not first level
stream << '|';
}
// Iterate over entries in this level
for ( int i = 0; i < cardLevel; ++ i )
{
stream << '.';
}
// Finally dump stream into descriptor
str = stream.str();
} // if ( str = "" )
}
int main( int argc, char* argv[] )
{
// Set default argument values and options
vtkStdString descriptor = "";
int dim = 3;
int branch = 3;
int max = 3;
int nX = 2;
int nY = 3;
int nZ = 2;
double sX = 1.5;
double sY = 1.;
double sZ = .7;
int nContours = 1;
bool skipAxisCut = false;
bool skipContour = false;
bool skipCut = false;
bool skipGeometry = false;
bool skipShrink = false;
bool printDescriptor = false;
// Initialize command line argument parser
vtksys::CommandLineArguments clArgs;
clArgs.Initialize( argc, argv );
clArgs.StoreUnusedArguments( false );
// Parse command line parameters and options
clArgs.AddArgument( "--dimension",
vtksys::CommandLineArguments::SPACE_ARGUMENT,
&dim, "Dimension of hyper tree grid" );
clArgs.AddArgument( "--branch-factor",
vtksys::CommandLineArguments::SPACE_ARGUMENT,
&branch, "Branching factor of hyper tree grid" );
clArgs.AddArgument( "--max-level",
vtksys::CommandLineArguments::SPACE_ARGUMENT,
&max, "Maximum depth of hyper tree grid" );
clArgs.AddArgument("--descriptor",
vtksys::CommandLineArguments::SPACE_ARGUMENT,
&descriptor, "String describing the hyper tree grid");
clArgs.AddArgument( "--grid-size-X",
vtksys::CommandLineArguments::SPACE_ARGUMENT,
&nX, "Size of hyper tree grid in X direction" );
clArgs.AddArgument( "--grid-size-Y",
vtksys::CommandLineArguments::SPACE_ARGUMENT,
&nY, "Size of hyper tree grid in Y direction" );
clArgs.AddArgument( "--grid-size-Z",
vtksys::CommandLineArguments::SPACE_ARGUMENT,
&nZ, "Size of hyper tree grid in Z direction" );
clArgs.AddArgument( "--grid-scale-X",
vtksys::CommandLineArguments::SPACE_ARGUMENT,
&sX, "Scale of hyper tree grid in X direction" );
clArgs.AddArgument( "--grid-scale-Y",
vtksys::CommandLineArguments::SPACE_ARGUMENT,
&sY, "Scale of hyper tree grid in Y direction" );
clArgs.AddArgument( "--grid-scale-Z",
vtksys::CommandLineArguments::SPACE_ARGUMENT,
&sZ, "Scale of hyper tree grid in Z direction" );
clArgs.AddArgument( "--contours",
vtksys::CommandLineArguments::SPACE_ARGUMENT,
&nContours, "Number of iso-contours to be calculated" );
clArgs.AddArgument( "--skip-Axis-Cut",
vtksys::CommandLineArguments::NO_ARGUMENT,
&skipAxisCut, "Skip axis cut filter" );
clArgs.AddArgument( "--skip-Contour",
vtksys::CommandLineArguments::NO_ARGUMENT,
&skipContour, "Skip contour filter" );
clArgs.AddArgument( "--skip-Cut",
vtksys::CommandLineArguments::NO_ARGUMENT,
&skipCut, "Skip cut filter" );
clArgs.AddArgument( "--skip-Geometry",
vtksys::CommandLineArguments::NO_ARGUMENT,
&skipGeometry, "Skip geometry filter" );
clArgs.AddArgument( "--skip-Shrink",
vtksys::CommandLineArguments::NO_ARGUMENT,
&skipShrink, "Skip shrink filter" );
clArgs.AddArgument( "--print-Descriptor",
vtksys::CommandLineArguments::NO_ARGUMENT,
&printDescriptor, "Print descriptor string" );
// If incorrect arguments were provided, provide some help and terminate in error.
if ( ! clArgs.Parse() )
{
cerr << "Usage: "
<< clArgs.GetHelp()
<< "\n";
return 1;
}
// Verify and set input parameters
SetInputParameters( dim, branch, nX, nY, nZ, max, descriptor );
if ( printDescriptor )
{
cerr << "# Hyper tree grid descriptor: "
<< endl
<< descriptor
<< endl;
}
// Create hyper tree grid source
vtkNew<vtkHyperTreeGridSource> source;
source->DualOn();
source->SetGridSize( nX, nY, nZ );
source->SetGridScale( sX, sY, sZ );
source->SetDimension( dim );
source->SetAxisBranchFactor( branch );
source->SetMaximumLevel( max );
source->SetDescriptor( descriptor.c_str() );
source->Update();
vtkHyperTreeGrid* htGrid = source->GetOutput();
cerr << " Number of hyper tree dual grid cells: "
<< htGrid->GetNumberOfCells()
<< endl;
if ( ! skipGeometry )
{
cerr << "# Geometry" << endl;
vtkNew<vtkHyperTreeGridGeometry> geometry;
geometry->SetInputConnection( source->GetOutputPort() );
vtkNew<vtkPolyDataWriter> writer4;
writer4->SetFileName( "./hyperTreeGridGeometry.vtk" );
writer4->SetInputConnection( geometry->GetOutputPort() );
writer4->Write();
cerr << " Number of surface cells: "
<< geometry->GetOutput()->GetNumberOfCells()
<< endl;
}
if ( ! skipContour )
{
cerr << "# Contour" << endl;
vtkNew<vtkContourFilter> contour;
contour->SetInputData( htGrid );
double* range = htGrid->GetPointData()->GetScalars()->GetRange();
cerr << " Calculating "
<< nContours
<< " iso-contours across ["
<< range[0]
<< ", "
<< range[1]
<< "] range:"
<< endl;
contour->SetNumberOfContours( nContours );
double resolution = ( range[1] - range[0] ) / ( nContours + 1. );
double isovalue = resolution;
for ( int i = 0; i < nContours; ++ i, isovalue += resolution )
{
cerr << " Contour "
<< i
<< " at iso-value: "
<< isovalue
<< endl;
contour->SetValue( i, isovalue );
}
vtkNew<vtkPolyDataWriter> writer0;
writer0->SetFileName( "./hyperTreeGridContour.vtk" );
writer0->SetInputConnection( contour->GetOutputPort() );
writer0->Write();
cerr << " Number of cells in iso-contours: "
<< contour->GetOutput()->GetNumberOfCells()
<< endl;
}
if ( ! skipShrink )
{
cerr << "# Shrink" << endl;
vtkNew<vtkShrinkFilter> shrink;
shrink->SetInputData( htGrid );
shrink->SetShrinkFactor( .5 );
vtkNew<vtkUnstructuredGridWriter> writer1;
writer1->SetFileName( "./hyperTreeGridShrink.vtk" );
writer1->SetInputConnection( shrink->GetOutputPort() );
writer1->Write();
cerr << " Number of shrunk cells: "
<< shrink->GetOutput()->GetNumberOfCells()
<< endl;
}
if ( ! skipAxisCut )
{
// Axis-aligned cut works only in 3D for now
if ( dim == 3 )
{
cerr << "# HyperTreeGridAxisCut" << endl;
vtkNew<vtkHyperTreeGridAxisCut> axisCut;
axisCut->SetInputConnection( source->GetOutputPort() );
axisCut->SetPlaneNormalAxis( 2 );
axisCut->SetPlanePosition( .499 * nZ * sZ );
vtkNew<vtkPolyDataWriter> writer2;
writer2->SetFileName( "./hyperTreeGridAxisCut.vtk" );
writer2->SetInputConnection( axisCut->GetOutputPort() );
writer2->Write();
cerr << " Number of cells in axis cut: "
<< axisCut->GetOutput()->GetNumberOfCells()
<< endl;
}
}
if ( ! skipCut )
{
cerr << "# Cut" << endl;
vtkNew<vtkCutter> cut;
vtkNew<vtkPlane> plane;
plane->SetOrigin( .5, .5, .15 );
plane->SetNormal( 0, 0, 1 );
cut->SetInputData( htGrid );
cut->SetCutFunction( plane.GetPointer() );
vtkNew<vtkPolyDataWriter> writer3;
writer3->SetFileName( "./hyperTreeGridCut.vtk" );
writer3->SetInputConnection( cut->GetOutputPort() );
writer3->Write();
cerr << " Number of cells in generic cut: "
<< cut->GetOutput()->GetNumberOfCells()
<< endl;
}
return 0;
}
|