1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
|
#!/usr/bin/env python
from __future__ import print_function
from vtk import *
import os.path
from vtk.util.misc import vtkGetDataRoot
VTK_DATA_ROOT = vtkGetDataRoot()
# Set database parameters
data_dir = VTK_DATA_ROOT + "/Data/Infovis/SQLite/"
if not os.path.exists( data_dir):
data_dir = VTK_DATA_ROOT + "/Data/Infovis/SQLite/"
if not os.path.exists( data_dir):
data_dir = VTK_DATA_ROOT + "/Data/Infovis/SQLite/"
sqlite_file = data_dir + "temperatures.db"
databaseToTable = vtkSQLDatabaseTableSource()
databaseToTable.SetURL("sqlite://" + sqlite_file)
# Pull the first data set from the database
databaseToTable.SetQuery("select * from main_tbl where CompId==2")
# Calculate primary descriptive statistics for first batch
print("# Calculate primary model of descriptive statistics for first data set:")
ds1 = vtkDescriptiveStatistics()
ds1.AddInputConnection( databaseToTable.GetOutputPort() )
ds1.AddColumn("Temp1")
ds1.AddColumn("Temp2")
ds1.SetLearnOption( 1 )
ds1.SetDeriveOption( 0 )
ds1.SetAssessOption( 0 )
ds1.SetTestOption( 0 )
ds1.Update()
# Show primary descriptive statistics for first batch
dStats1 = ds1.GetOutputDataObject( 1 )
dPrimary1 = dStats1.GetBlock( 0 )
dPrimary1.Dump( 15 )
print()
# Pull the second data set from the database
databaseToTable.SetQuery("select * from main_tbl where CompId==3")
# Calculate primary descriptive statistics for second batch
print("# Calculate primary model of descriptive statistics for second data set:")
ds2 = vtkDescriptiveStatistics()
ds2.AddInputConnection( databaseToTable.GetOutputPort() )
ds2.AddColumn("Temp1")
ds2.AddColumn("Temp2")
ds2.SetLearnOption( 1 )
ds2.SetDeriveOption( 0 )
ds2.SetAssessOption( 0 )
ds2.SetTestOption( 0 )
ds2.Update()
# Show primary descriptive statistics for second batch
dStats2 = ds2.GetOutputDataObject( 1 )
dPrimary2 = dStats2.GetBlock( 0 )
dPrimary2.Dump( 15 )
print()
# Finally aggregate both models to get a new primary model for the whole ensemble
print("# Aggregate both primary models:")
collection = vtkDataObjectCollection()
collection.AddItem( dStats1 )
collection.AddItem( dStats2 )
ds = vtkDescriptiveStatistics()
aggregated = vtkMultiBlockDataSet()
ds.Aggregate( collection, aggregated )
dPrimary = aggregated.GetBlock( 0 )
dPrimary.Dump( 15 )
print()
# Calculate derived model for whole ensemble
print("# Now calculating derived statistics for whole ensemble:")
ds.SetInputData( 2, aggregated )
ds.SetLearnOption( 0 )
ds.SetDeriveOption( 1 )
ds.SetAssessOption( 0 )
ds.SetTestOption( 0 )
ds.Update()
dStats = ds.GetOutputDataObject( 1 )
dDerived = dStats.GetBlock( 1 )
dDerived.Dump( 15 )
print()
# Pull entire data set from the database
databaseToTable.SetQuery("select * from main_tbl")
# Verify with calculation for whole ensemble at once
print("# Finally verifying by directly calculating statistics for whole ensemble:")
ds0 = vtkDescriptiveStatistics()
ds0.AddInputConnection( databaseToTable.GetOutputPort() )
ds0.AddColumn("Temp1")
ds0.AddColumn("Temp2")
ds0.SetLearnOption( 1 )
ds0.SetDeriveOption( 1 )
ds0.SetAssessOption( 0 )
ds0.SetTestOption( 0 )
ds0.Update()
# Show all descriptive statistics for whole ensemble
dStats0 = ds0.GetOutputDataObject( 1 )
dPrimary0 = dStats0.GetBlock( 0 )
dPrimary0.Dump( 15 )
dDerived0 = dStats0.GetBlock( 1 )
dDerived0.Dump( 15 )
print()
|