File: Medical2.tcl

package info (click to toggle)
vtk7 7.1.1%2Bdfsg2-8
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 127,396 kB
  • sloc: cpp: 1,539,584; ansic: 124,382; python: 78,038; tcl: 47,013; xml: 8,142; yacc: 5,040; java: 4,439; perl: 3,132; lex: 1,926; sh: 1,500; makefile: 126; objc: 83
file content (125 lines) | stat: -rw-r--r-- 4,813 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
package require vtk
package require vtkinteraction

#
# This example reads a volume dataset, extracts two isosurfaces that
# represent the skin and bone, and then displays them.
#

# Create the renderer, the render window, and the interactor. The renderer
# draws into the render window, the interactor enables mouse- and
# keyboard-based interaction with the scene.
#
vtkRenderer aRenderer
vtkRenderWindow renWin
  renWin AddRenderer aRenderer
vtkRenderWindowInteractor iren
  iren SetRenderWindow renWin

# The following reader is used to read a series of 2D slices (images)
# that compose the volume. The slice dimensions are set, and the
# pixel spacing. The data Endianness must also be specified. The reader
# usese the FilePrefix in combination with the slice number to construct
# filenames using the format FilePrefix.%d. (In this case the FilePrefix
# is the root name of the file: quarter.)
vtkVolume16Reader v16
  v16 SetDataDimensions 64 64
  v16 SetDataByteOrderToLittleEndian
  v16 SetFilePrefix  "$VTK_DATA_ROOT/Data/headsq/quarter"
  v16 SetImageRange 1 93
  v16 SetDataSpacing  3.2 3.2 1.5

# An isosurface, or contour value of 500 is known to correspond to the
# skin of the patient. Once generated, a vtkPolyDataNormals filter is
# is used to create normals for smooth surface shading during rendering.
# The triangle stripper is used to create triangle strips from the
# isosurface these render much faster on may systems.
vtkContourFilter skinExtractor
  skinExtractor SetInputConnection [v16 GetOutputPort]
  skinExtractor SetValue 0 500
vtkPolyDataNormals skinNormals
  skinNormals SetInputConnection [skinExtractor GetOutputPort]
  skinNormals SetFeatureAngle 60.0
vtkStripper skinStripper
  skinStripper SetInputConnection [skinNormals GetOutputPort]
vtkPolyDataMapper skinMapper
  skinMapper SetInputConnection [skinStripper GetOutputPort]
  skinMapper ScalarVisibilityOff
vtkActor skin
  skin SetMapper skinMapper
  [skin GetProperty]  SetDiffuseColor 1 .49 .25
  [skin GetProperty] SetSpecular .3
  [skin GetProperty] SetSpecularPower 20

# An isosurface, or contour value of 1150 is known to correspond to the
# skin of the patient. Once generated, a vtkPolyDataNormals filter is
# is used to create normals for smooth surface shading during rendering.
# The triangle stripper is used to create triangle strips from the
# isosurface these render much faster on may systems.
vtkContourFilter boneExtractor
  boneExtractor SetInputConnection [v16 GetOutputPort]
  boneExtractor SetValue 0 1150
vtkPolyDataNormals boneNormals
  boneNormals SetInputConnection [boneExtractor GetOutputPort]
  boneNormals SetFeatureAngle 60.0
vtkStripper boneStripper
  boneStripper SetInputConnection [boneNormals GetOutputPort]
vtkPolyDataMapper boneMapper
  boneMapper SetInputConnection [boneStripper GetOutputPort]
  boneMapper ScalarVisibilityOff
vtkActor bone
  bone SetMapper boneMapper
  [bone GetProperty] SetDiffuseColor 1 1 .9412

# An outline provides context around the data.
#
vtkOutlineFilter outlineData
  outlineData SetInputConnection [v16 GetOutputPort]
vtkPolyDataMapper mapOutline
  mapOutline SetInputConnection [outlineData GetOutputPort]
vtkActor outline
  outline SetMapper mapOutline
  [outline GetProperty] SetColor 0 0 0

# It is convenient to create an initial view of the data. The FocalPoint
# and Position form a vector direction. Later on (ResetCamera() method)
# this vector is used to position the camera to look at the data in
# this direction.
vtkCamera aCamera
  aCamera SetViewUp  0 0 -1
  aCamera SetPosition  0 1 0
  aCamera SetFocalPoint  0 0 0
  aCamera ComputeViewPlaneNormal

# Actors are added to the renderer. An initial camera view is created.
# The Dolly() method moves the camera towards the FocalPoint,
# thereby enlarging the image.
aRenderer AddActor outline
aRenderer AddActor skin
aRenderer AddActor bone
aRenderer SetActiveCamera aCamera
aRenderer ResetCamera
aCamera Dolly 1.5

# Set a background color for the renderer and set the size of the
# render window (expressed in pixels).
aRenderer SetBackground 1 1 1
renWin SetSize 640 480

# Note that when camera movement occurs (as it does in the Dolly()
# method), the clipping planes often need adjusting. Clipping planes
# consist of two planes: near and far along the view direction. The
# near plane clips out objects in front of the plane the far plane
# clips out objects behind the plane. This way only what is drawn
# between the planes is actually rendered.
aRenderer ResetCameraClippingRange

# Set up a callback (using command/observer) to bring up the Tcl
# command GUI when the keypress-u (UserEvent) key is pressed.
iren AddObserver UserEvent {wm deiconify .vtkInteract}

# Interact with data. The Tcl/Tk event loop is started automatically.
iren Initialize
wm withdraw .

iren Start