1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
|
/*=========================================================================
Program: Visualization Toolkit
Module: TaskParallelism.cxx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
// This example demonstrates how to write a task parallel application
// with VTK. It creates two different pipelines and assigns each to
// one processor. These pipelines are:
// 1. rtSource -> contour -> probe
// \ /
// -> gradient magnitude
// 2. rtSource -> gradient -> shrink -> glyph3D
// See task1.cxx and task2.cxx for the pipelines.
#include "TaskParallelism.h"
#include "vtkCompositeRenderManager.h"
#include "vtkPolyDataMapper.h"
#include "vtkRenderWindow.h"
#include "vtkRenderWindowInteractor.h"
// This function sets up properties common to both processes
// and executes the task corresponding to the current process
void process(vtkMultiProcessController* controller, void* vtkNotUsed(arg))
{
taskFunction task;
int myId = controller->GetLocalProcessId();
// Chose the appropriate task (see task1.cxx and task2.cxx)
if ( myId == 0 )
{
task = task1;
}
else
{
task = task2;
}
// Setup camera
vtkCamera* cam = vtkCamera::New();
cam->SetPosition( -0.6105, 1.467, -6.879 );
cam->SetFocalPoint( -0.0617558, 0.127043, 0 );
cam->SetViewUp( -0.02, 0.98, 0.193 );
cam->SetClippingRange( 3.36, 11.67);
cam->Dolly(0.8);
// Create the render objects
vtkRenderWindow* renWin = vtkRenderWindow::New();
renWin->SetSize( WINDOW_WIDTH, WINDOW_HEIGHT );
vtkRenderWindowInteractor* iren = vtkRenderWindowInteractor::New();
iren->SetRenderWindow(renWin);
// This class allows all processes to composite their images.
// The root process then displays it in it's render window.
vtkCompositeRenderManager* tc = vtkCompositeRenderManager::New();
tc->SetRenderWindow(renWin);
// Generate the pipeline see task1.cxx and task2.cxx)
vtkPolyDataMapper* mapper = (*task)(renWin, EXTENT, cam);
// Only the root process will have an active interactor. All
// the other render windows will be slaved to the root.
tc->StartInteractor();
// Clean-up
iren->Delete();
if (mapper)
{
mapper->Delete();
}
renWin->Delete();
cam->Delete();
}
int main( int argc, char* argv[] )
{
// Note that this will create a vtkMPIController if MPI
// is configured, vtkThreadedController otherwise.
vtkMPIController* controller = vtkMPIController::New();
controller->Initialize(&argc, &argv);
// When using MPI, the number of processes is determined
// by the external program which launches this application.
// However, when using threads, we need to set it ourselves.
if (controller->IsA("vtkThreadedController"))
{
// Set the number of processes to 2 for this example.
controller->SetNumberOfProcesses(2);
}
int numProcs = controller->GetNumberOfProcesses();
if (numProcs != 2)
{
cerr << "This example requires two processes." << endl;
controller->Finalize();
controller->Delete();
return 1;
}
// Execute the function named "process" on both processes
controller->SetSingleMethod(process, 0);
controller->SingleMethodExecute();
// Clean-up and exit
controller->Finalize();
controller->Delete();
return 0;
}
|