File: ExampleKMeansStatistics.cxx

package info (click to toggle)
vtk7 7.1.1%2Bdfsg2-8
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 127,396 kB
  • sloc: cpp: 1,539,584; ansic: 124,382; python: 78,038; tcl: 47,013; xml: 8,142; yacc: 5,040; java: 4,439; perl: 3,132; lex: 1,926; sh: 1,500; makefile: 126; objc: 83
file content (254 lines) | stat: -rw-r--r-- 7,650 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
/*
 * Copyright 2008 Sandia Corporation.
 * Under the terms of Contract DE-AC04-94AL85000, there is a non-exclusive
 * license for use of this work by or on behalf of the
 * U.S. Government. Redistribution and use in source and binary forms, with
 * or without modification, are permitted provided that this Notice and any
 * statement of authorship are reproduced on all copies.
 */
// .SECTION Thanks
// Thanks to Janine Bennett, Philippe Pebay, and David Thompson from Sandia National Laboratories
// for implementing this test.

#include "vtkDoubleArray.h"
#include "vtkMultiBlockDataSet.h"
#include "vtkStringArray.h"
#include "vtkIdTypeArray.h"
#include "vtkTable.h"
#include "vtkMath.h"
#include "vtkKMeansStatistics.h"
#include "vtkStdString.h"
#include "vtkTimerLog.h"

#include <sstream>


//=============================================================================
int main( int, char *[] )
{
  int testStatus = 0;

  const int nDim = 4;
  int nVals = 50;

  // Seed random number generator
  vtkMath::RandomSeed( static_cast<int>( vtkTimerLog::GetUniversalTime() ) );

  // Generate an input table that contains samples of mutually independent random variables over [0, 1]
  vtkTable* inputData = vtkTable::New();
  vtkDoubleArray* doubleArray;

  int numComponents = 1;
  for ( int c = 0; c < nDim; ++ c )
  {
    std::ostringstream colName;
    colName << "coord " << c;
    doubleArray = vtkDoubleArray::New();
    doubleArray->SetNumberOfComponents( numComponents );
    doubleArray->SetName( colName.str().c_str() );
    doubleArray->SetNumberOfTuples( nVals );

    double x;
    for ( int r = 0; r < nVals; ++ r )
    {
      //x = vtkMath::Gaussian();
      x = vtkMath::Random();
      doubleArray->SetValue( r, x );
    }

    inputData->AddColumn( doubleArray );
    doubleArray->Delete();
  }

  vtkTable* paramData = vtkTable::New();
  vtkIdTypeArray* paramCluster;
  vtkDoubleArray* paramArray;
  const int numRuns = 5;
  const int numClustersInRun[] = { 5, 2, 3, 4, 5 };
  paramCluster = vtkIdTypeArray::New();
  paramCluster->SetName( "K" );

  for( int curRun = 0; curRun < numRuns; curRun++ )
  {
    for( int nInRun = 0; nInRun < numClustersInRun[curRun]; nInRun++ )
    {
      paramCluster->InsertNextValue( numClustersInRun[curRun] );
    }
  }
  paramData->AddColumn( paramCluster );
  paramCluster->Delete();

  for ( int c = 0; c < 5; ++ c )
  {
    std::ostringstream colName;
    colName << "coord " << c;
    paramArray = vtkDoubleArray::New();
    paramArray->SetNumberOfComponents( numComponents );
    paramArray->SetName( colName.str().c_str() );

    double x;
    for( int curRun = 0; curRun < numRuns; curRun++ )
    {
      for( int nInRun = 0; nInRun < numClustersInRun[curRun]; nInRun++ )
      {
        //x = vtkMath::Gaussian();
        x = vtkMath::Random();
        paramArray->InsertNextValue( x );
      }
    }
    paramData->AddColumn( paramArray );
    paramArray->Delete();
  }

  // Set k-means statistics algorithm and its input data port
  vtkKMeansStatistics* haruspex = vtkKMeansStatistics::New();

  // First verify that absence of input does not cause trouble
  cout << "## Verifying that absence of input does not cause trouble... ";
  haruspex->Update();
  cout << "done.\n";

  // Prepare first test with data
  haruspex->SetInputData( vtkStatisticsAlgorithm::INPUT_DATA, inputData );
  haruspex->SetColumnStatus( inputData->GetColumnName( 0 ) , 1 );
  haruspex->SetColumnStatus( inputData->GetColumnName( 2 ) , 1 );
  haruspex->SetColumnStatus( "Testing", 1 );
  haruspex->RequestSelectedColumns();
  haruspex->SetDefaultNumberOfClusters( 3 );

  cout << "## Testing with no input data:"
           << "\n";
  // Test Learn and Derive options
  haruspex->SetLearnOption( true );
  haruspex->SetDeriveOption( true );
  haruspex->SetTestOption( false );
  haruspex->SetAssessOption( false );

  haruspex->Update();
  vtkMultiBlockDataSet* outputMetaDS = vtkMultiBlockDataSet::SafeDownCast(
                        haruspex->GetOutputDataObject( vtkStatisticsAlgorithm::OUTPUT_MODEL ) );
  for ( unsigned int b = 0; b < outputMetaDS->GetNumberOfBlocks(); ++ b )
  {
    vtkTable* outputMeta = vtkTable::SafeDownCast( outputMetaDS->GetBlock( b ) );
    if ( b == 0 )
    {

      vtkIdType testIntValue = 0;
      for( vtkIdType r = 0; r < outputMeta->GetNumberOfRows(); r++ )
      {
        testIntValue += outputMeta->GetValueByName( r, "Cardinality" ).ToInt();
      }

      cout << "## Computed clusters (cardinality: "
           << testIntValue
           << " / run):\n";

      if ( testIntValue != nVals )
      {
        vtkGenericWarningMacro("Sum of cluster cardinalities is incorrect: "
                               << testIntValue
                               << " != "
                               << nVals
                               << ".");
        testStatus = 1;
      }
    }
    else
    {
      cout << "## Ranked cluster: "
           << "\n";
    }

    outputMeta->Dump();
    cout << "\n";
  }


  haruspex->SetInputData( vtkStatisticsAlgorithm::LEARN_PARAMETERS, paramData );
  cout << "## Testing with input table:"
           << "\n";

  paramData->Dump();
  cout << "\n";

  // Test Assess option only
  haruspex->SetLearnOption( true );
  haruspex->SetDeriveOption( true );
  haruspex->SetTestOption( false );
  haruspex->SetAssessOption( false );

  haruspex->Update();
  outputMetaDS = vtkMultiBlockDataSet::SafeDownCast(
                 haruspex->GetOutputDataObject( vtkStatisticsAlgorithm::OUTPUT_MODEL ) );
  for ( unsigned int b = 0; b < outputMetaDS->GetNumberOfBlocks(); ++ b )
  {
    vtkTable* outputMeta = vtkTable::SafeDownCast( outputMetaDS->GetBlock( b ) );
    if ( b == 0 )
    {
      vtkIdType r = 0;
      vtkIdType testIntValue = 0;
      for( int curRun = 0; curRun < numRuns; curRun++ )
      {
        testIntValue = 0;
        for( int nInRun = 0; nInRun < numClustersInRun[curRun]; nInRun++ )
        {
          testIntValue += outputMeta->GetValueByName( r, "Cardinality" ).ToInt();
          r++;
        }
      }

      if ( r != outputMeta->GetNumberOfRows() )
      {
        vtkGenericWarningMacro("Inconsistency in number of rows: "
                               << r
                               << " != "
                               << outputMeta->GetNumberOfRows()
                               << ".");
        testStatus = 1;
      }

      cout << "## Computed clusters (cardinality: "
           << testIntValue
           << " / run):\n";

      if ( testIntValue != nVals )
      {
        vtkGenericWarningMacro("Sum of cluster cardinalities is incorrect: "
                               << testIntValue
                               << " != "
                               << nVals
                               << ".");
        testStatus = 1;
      }
    }
    else
    {
      cout << "## Ranked cluster: "
           << "\n";
    }

    outputMeta->Dump();
    cout << "\n";
  }

  cout << "=================== ASSESS ==================== " << endl;
  vtkMultiBlockDataSet* paramsTables = vtkMultiBlockDataSet::New();
  paramsTables->ShallowCopy( outputMetaDS );

  haruspex->SetInputData( vtkStatisticsAlgorithm::INPUT_MODEL, paramsTables );

  // Test Assess option only (do not recalculate nor rederive a model)
  haruspex->SetLearnOption( false );
  haruspex->SetDeriveOption( false );
  haruspex->SetTestOption( false );
  haruspex->SetAssessOption( true );
  haruspex->Update();
  vtkTable* outputData = haruspex->GetOutput();
  outputData->Dump();
  paramsTables->Delete();
  paramData->Delete();
  inputData->Delete();
  haruspex->Delete();

  return testStatus;
}