1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
|
/*=========================================================================
Program: Visualization Toolkit
Module: TestQuadraturePoints.cxx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
// This example demonstrates the capabilities of vtkQuadraturePointInterpolator
// vtkQuadraturePointsGenerator and the class required to suppport their
// addition.
//
// The command line arguments are:
// -I => run in interactive mode; unless this is used, the program will
// not allow interaction and exit
// -D <path> => path to the data; the data should be in <path>/Data/
#include "vtkTesting.h"
#include "vtkUnstructuredGrid.h"
#include "vtkXMLUnstructuredGridReader.h"
#include "vtkUnstructuredGridReader.h"
#include "vtkXMLUnstructuredGridWriter.h"
#include "vtkPolyData.h"
#include "vtkPointData.h"
#include "vtkQuadratureSchemeDictionaryGenerator.h"
#include "vtkQuadraturePointInterpolator.h"
#include "vtkQuadraturePointsGenerator.h"
#include "vtkPolyDataMapper.h"
#include "vtkActor.h"
#include "vtkRenderWindow.h"
#include "vtkRenderer.h"
#include "vtkRenderWindowInteractor.h"
#include "vtkCamera.h"
#include "vtkGlyph3D.h"
#include "vtkSphereSource.h"
#include "vtkDoubleArray.h"
#include "vtkWarpVector.h"
#include "vtkExtractGeometry.h"
#include "vtkThreshold.h"
#include "vtkPlane.h"
#include "vtkDataObject.h"
#include "vtkProperty.h"
#include "vtkPNGWriter.h"
#include "vtkWindowToImageFilter.h"
#include "vtkDataSetSurfaceFilter.h"
#include <string>
#include "vtkSmartPointer.h"
// Generate a vector to warp by.
int GenerateWarpVector(vtkUnstructuredGrid *usg);
// Generate a scalar to threshold by.
int GenerateThresholdScalar(vtkUnstructuredGrid *usg);
int TestQuadraturePoints(int argc,char *argv[])
{
vtkSmartPointer<vtkTesting> testHelper = vtkSmartPointer<vtkTesting>::New();
testHelper->AddArguments(argc, argv);
if (!testHelper->IsFlagSpecified("-D"))
{
std::cerr << "Error: -D /path/to/data was not specified.";
return EXIT_FAILURE;
}
std::string dataRoot=testHelper->GetDataRoot();
std::string tempDir=testHelper->GetTempDirectory();
std::string inputFileName=dataRoot+"/Data/Quadratic/CylinderQuadratic.vtk";
std::string tempFile=tempDir+"/tmp.vtu";
std::string tempBaseline=tempDir+"/TestQuadraturePoints.png";
// Raed, xml or legacy file.
vtkUnstructuredGrid *input=0;
vtkSmartPointer<vtkXMLUnstructuredGridReader> xusgr = vtkSmartPointer<vtkXMLUnstructuredGridReader>::New();
xusgr->SetFileName(inputFileName.c_str());
vtkSmartPointer<vtkUnstructuredGridReader> lusgr = vtkSmartPointer<vtkUnstructuredGridReader>::New();
lusgr->SetFileName(inputFileName.c_str());
if (xusgr->CanReadFile(inputFileName.c_str()))
{
input=xusgr->GetOutput();
xusgr->Update();
lusgr=NULL;
}
else if (lusgr->IsFileValid("unstructured_grid"))
{
lusgr->SetFileName(inputFileName.c_str());
input=lusgr->GetOutput();
lusgr->Update();
xusgr=NULL;
}
if (input==0)
{
std::cerr << "Error: Could not read file " << inputFileName << "." << std::endl;
return EXIT_FAILURE;
}
// Add a couple arrays to be used in the demonstrations.
int warpIdx=GenerateWarpVector(input);
std::string warpName=input->GetPointData()->GetArray(warpIdx)->GetName();
int threshIdx=GenerateThresholdScalar(input);
std::string threshName=input->GetPointData()->GetArray(threshIdx)->GetName();
// Add a quadrature scheme dictionary to the data set. This filter is
// solely for our convinience. Typically we would expect that users
// provide there own in XML format and use the readers or to generate
// them on the fly.
vtkSmartPointer<vtkQuadratureSchemeDictionaryGenerator> dictGen
= vtkSmartPointer<vtkQuadratureSchemeDictionaryGenerator>::New();
dictGen->SetInputData(input);
// Interpolate fields to the quadrature points. This generates new field data
// arrays, but not a set of points.
vtkSmartPointer<vtkQuadraturePointInterpolator> fieldInterp =
vtkSmartPointer<vtkQuadraturePointInterpolator>::New();
fieldInterp->SetInputArrayToProcess(0, 0, 0, vtkDataObject::FIELD_ASSOCIATION_CELLS, "QuadratureOffset");
fieldInterp->SetInputConnection(dictGen->GetOutputPort());
// Write the dataset as XML. This excercises the information writer.
vtkSmartPointer<vtkXMLUnstructuredGridWriter> xusgw
= vtkSmartPointer<vtkXMLUnstructuredGridWriter>::New();
xusgw->SetFileName(tempFile.c_str());
xusgw->SetInputConnection(fieldInterp->GetOutputPort());
xusgw->Write();
xusgw=NULL;
fieldInterp=NULL;
// Read the data back in form disk. This excercises the information reader.
xusgr=NULL;
xusgr.TakeReference(vtkXMLUnstructuredGridReader::New());
xusgr->SetFileName(tempFile.c_str());
xusgr->Update();
input=xusgr->GetOutput();
input->Register(0);
input->GetPointData()->SetActiveVectors(warpName.c_str());
input->GetPointData()->SetActiveScalars(threshName.c_str());
xusgr=NULL;
// Demonstrate warp by vector.
vtkSmartPointer<vtkWarpVector> warper = vtkSmartPointer<vtkWarpVector>::New();
warper->SetInputData(input);
warper->SetScaleFactor(0.02);
input->Delete();
// Demonstrate clip functionality.
vtkSmartPointer<vtkPlane> plane = vtkSmartPointer<vtkPlane>::New();
plane->SetOrigin(0.0,0.0,0.03);
plane->SetNormal(0.0,0.0,-1.0);
vtkSmartPointer<vtkExtractGeometry> clip = vtkSmartPointer<vtkExtractGeometry>::New();
clip->SetImplicitFunction(plane);
clip->SetInputConnection(warper->GetOutputPort());
// Demonstrate threshold functionality.
vtkSmartPointer<vtkThreshold> thresholder = vtkSmartPointer<vtkThreshold>::New();
thresholder->SetInputConnection(clip->GetOutputPort());
thresholder->ThresholdBetween(0.0,3.0);
// Generate the quadrature point set using a specific array as point data.
vtkSmartPointer<vtkQuadraturePointsGenerator> pointGen = vtkSmartPointer<vtkQuadraturePointsGenerator>::New();
pointGen->SetInputArrayToProcess(0, 0, 0, vtkDataObject::FIELD_ASSOCIATION_CELLS, "QuadratureOffset");
pointGen->SetInputConnection(thresholder->GetOutputPort());
vtkPolyData *output=vtkPolyData::SafeDownCast(pointGen->GetOutput());
pointGen->Update();
const char* activeScalars = "pressure";
output->GetPointData()->SetActiveScalars(activeScalars);
// Glyph the point set.
vtkSmartPointer<vtkSphereSource> ss = vtkSmartPointer<vtkSphereSource>::New();
ss->SetRadius(0.0008);
vtkSmartPointer<vtkGlyph3D> glyphs = vtkSmartPointer<vtkGlyph3D>::New();
glyphs->SetInputConnection(pointGen->GetOutputPort());
glyphs->SetSourceConnection(ss->GetOutputPort());
glyphs->ScalingOff();
glyphs->SetColorModeToColorByScalar();
// Map the glyphs.
vtkSmartPointer<vtkPolyDataMapper> pdmQPts = vtkSmartPointer<vtkPolyDataMapper>::New();
pdmQPts->SetInputConnection(glyphs->GetOutputPort());
pdmQPts->SetColorModeToMapScalars();
pdmQPts->SetScalarModeToUsePointData();
if(output->GetPointData()->GetArray(0) == NULL)
{
vtkGenericWarningMacro( << "no point data in output of vtkQuadraturePointsGenerator" );
return EXIT_FAILURE;
}
pdmQPts->SetScalarRange(output->GetPointData()->GetArray(activeScalars)->GetRange());
vtkSmartPointer<vtkActor> outputActor = vtkSmartPointer<vtkActor>::New();
outputActor->SetMapper(pdmQPts);
// Extract the surface of the warped input, for reference.
vtkSmartPointer<vtkDataSetSurfaceFilter> surface = vtkSmartPointer<vtkDataSetSurfaceFilter>::New();
surface->SetInputConnection(warper->GetOutputPort());
// Map the warped surface.
vtkSmartPointer<vtkPolyDataMapper> pdmWSurf = vtkSmartPointer<vtkPolyDataMapper>::New();
pdmWSurf->SetInputConnection(surface->GetOutputPort());
pdmWSurf->ScalarVisibilityOff();
vtkSmartPointer<vtkActor> surfaceActor = vtkSmartPointer<vtkActor>::New();
surfaceActor->GetProperty()->SetColor(1.0,1.0,1.0);
surfaceActor->GetProperty()->SetRepresentationToSurface();
surfaceActor->SetMapper(pdmWSurf);
// Setup left render pane.
vtkCamera *camera=0;
vtkSmartPointer<vtkRenderer> ren0 = vtkSmartPointer<vtkRenderer>::New();
ren0->SetViewport(0.0,0.0,0.5,1.0);
ren0->AddActor(outputActor);
ren0->SetBackground(0.328125, 0.347656, 0.425781);
ren0->ResetCamera();
camera = ren0->GetActiveCamera();
camera->Elevation(95.0);
camera->SetViewUp(0.0,0.0,1.0);
camera->Azimuth(180.0);
// Setup upper right pane.
vtkSmartPointer<vtkRenderer> ren1 = vtkSmartPointer<vtkRenderer>::New();
ren1->SetViewport(0.5,0.5,1.0,1.0);
ren1->AddActor(outputActor);
ren1->AddActor(surfaceActor);
ren1->SetBackground(0.328125, 0.347656, 0.425781);
ren1->ResetCamera();
camera = ren1->GetActiveCamera();
camera->Elevation(-85.0);
camera->OrthogonalizeViewUp();
camera->Elevation(-5.0);
camera->OrthogonalizeViewUp();
camera->Elevation(-10.0);
camera->Azimuth(55.0);
// Setup lower right pane.
vtkSmartPointer<vtkRenderer> ren2 = vtkSmartPointer<vtkRenderer>::New();
ren2->SetViewport(0.5,0.0,1.0,0.5);
ren2->AddActor(outputActor);
ren2->SetBackground(0.328125, 0.347656, 0.425781);
ren2->AddActor(surfaceActor);
ren2->ResetCamera();
// If interactive mode then we show wireframes for
// reference.
if (testHelper->IsInteractiveModeSpecified())
{
surfaceActor->GetProperty()->SetOpacity(1.0);
surfaceActor->GetProperty()->SetRepresentationToWireframe();
}
// Render window
vtkSmartPointer<vtkRenderWindow> renwin = vtkSmartPointer<vtkRenderWindow>::New();
renwin->AddRenderer(ren0);
renwin->AddRenderer(ren1);
renwin->AddRenderer(ren2);
renwin->SetSize(800,600);
vtkSmartPointer<vtkRenderWindowInteractor> iren =
vtkSmartPointer<vtkRenderWindowInteractor>::New();
iren->SetRenderWindow(renwin);
iren->Initialize();
iren->Start();
return EXIT_SUCCESS;
}
//-----------------------------------------------------------------------------
int GenerateWarpVector(vtkUnstructuredGrid *usg)
{
vtkDoubleArray *pts
= vtkArrayDownCast<vtkDoubleArray>(usg->GetPoints()->GetData());
vtkIdType nTups
= usg->GetPointData()->GetArray(0)->GetNumberOfTuples();
double ptsBounds[6];
usg->GetPoints()->GetBounds(ptsBounds);
double zmax=ptsBounds[5];
double zmin=ptsBounds[4];
double zmid=(zmax+zmin)/4.0;
vtkSmartPointer<vtkDoubleArray> da = vtkSmartPointer<vtkDoubleArray>::New();
int idx=usg->GetPointData()->AddArray(da); // note: returns the index.
da->SetName("warp");
da->SetNumberOfComponents(3);
da->SetNumberOfTuples(nTups);
double *pda=da->GetPointer(0);
double *ppts=pts->GetPointer(0);
for (vtkIdType i=0; i<nTups; ++i)
{
double zs=(ppts[2]-zmid)/(zmax-zmid); // move z to -1 to 1
double fzs=zs*zs*zs; // z**3
double r[2]; // radial vector
r[0]=ppts[0];
r[1]=ppts[1];
double modR=sqrt(r[0]*r[0]+r[1]*r[1]);
r[0]/=modR; // unit radial vector
r[0]*=fzs; // scale by z**3 in -1 to 1
r[1]/=modR;
r[1]*=fzs;
pda[0]=r[0]; // copy into result
pda[1]=r[1];
pda[2]=0.0;
pda+=3; // next
ppts+=3;
}
return idx;
}
//-----------------------------------------------------------------------------
int GenerateThresholdScalar(vtkUnstructuredGrid *usg)
{
vtkDoubleArray *pts
= vtkArrayDownCast<vtkDoubleArray>(usg->GetPoints()->GetData());
vtkIdType nTups
= usg->GetPointData()->GetArray(0)->GetNumberOfTuples();
double ptsBounds[6];
usg->GetPoints()->GetBounds(ptsBounds);
double zmax=ptsBounds[5];
double zmin=ptsBounds[4];
double zmid=(zmax+zmin)/4.0;
vtkSmartPointer<vtkDoubleArray> da = vtkSmartPointer<vtkDoubleArray>::New();
int idx=usg->GetPointData()->AddArray(da); // note: returns the index.
da->SetName("threshold");
da->SetNumberOfComponents(1);
da->SetNumberOfTuples(nTups);
double *pda=da->GetPointer(0);
double *ppts=pts->GetPointer(0);
for (vtkIdType i=0; i<nTups; ++i)
{
double zs=(ppts[2]-zmid)/(zmax-zmid); // move z to -1 to 1
double fzs=zs*zs*zs; // z**3
double r[2]; // radial vector
r[0]=ppts[0];
r[1]=ppts[1];
double modR=sqrt(r[0]*r[0]+r[1]*r[1]);
r[1]/=modR; // scale by z**3 in -1 to 1
r[1]*=fzs;
pda[0]=r[1]; // copy into result
pda+=1; // next
ppts+=3;
}
return idx;
}
|