1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
|
/*=========================================================================
Program: Visualization Toolkit
Module: TestRandomPKMeansStatisticsMPI.cxx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
/*
* Copyright 2011 Sandia Corporation.
* Under the terms of Contract DE-AC04-94AL85000, there is a non-exclusive
* license for use of this work by or on behalf of the
* U.S. Government. Redistribution and use in source and binary forms, with
* or without modification, are permitted provided that this Notice and any
* statement of authorship are reproduced on all copies.
*/
// .SECTION Thanks
// Thanks to Janine Bennett, Philippe Pebay, and David Thompson from Sandia National Laboratories
// for implementing this test.
#include <mpi.h>
#include "vtkPKMeansStatistics.h"
#include "vtkMath.h"
#include "vtkMPIController.h"
#include "vtkMultiBlockDataSet.h"
#include "vtkStdString.h"
#include "vtkTable.h"
#include "vtkTimerLog.h"
#include "vtkVariantArray.h"
#include "vtkIdTypeArray.h"
#include "vtkDoubleArray.h"
#include "vtksys/CommandLineArguments.hxx"
#include <sstream>
#include <vector>
namespace
{
struct RandomSampleStatisticsArgs
{
int nObsPerCluster;
int nProcs;
int nVariables;
int nClusters;
double meanFactor;
double stdev;
int* retVal;
int ioRank;
};
// This will be called by all processes
void RandomSampleStatistics( vtkMultiProcessController* controller, void* arg )
{
// Get test parameters
RandomSampleStatisticsArgs* args = reinterpret_cast<RandomSampleStatisticsArgs*>( arg );
*(args->retVal) = 0;
// Get MPI communicator
vtkMPICommunicator* com = vtkMPICommunicator::SafeDownCast( controller->GetCommunicator() );
// Get local rank
int myRank = com->GetLocalProcessId();
// Seed random number generator
vtkMath::RandomSeed( static_cast<int>( vtkTimerLog::GetUniversalTime() ) * ( myRank + 1 ) );
// Generate column names
int nVariables = args->nVariables;
std::vector<vtkStdString> columnNames;
for ( int v = 0; v < nVariables; ++ v )
{
std::ostringstream columnName;
columnName << "Variable " << v;
columnNames.push_back( columnName.str() );
}
// Generate an input table that contains samples of mutually independent Gaussian random variables
vtkTable* inputData = vtkTable::New();
vtkDoubleArray* doubleArray;
int obsPerCluster = args->nObsPerCluster;
int nClusters = args->nClusters;
int nVals = obsPerCluster * nClusters;
// Generate samples
for ( int v = 0; v < nVariables; ++ v )
{
doubleArray = vtkDoubleArray::New();
doubleArray->SetNumberOfComponents( 1 );
doubleArray->SetName( columnNames.at( v ) );
for ( int c = 0; c < nClusters; ++ c )
{
double x;
for ( int r = 0; r < obsPerCluster; ++ r )
{
x = vtkMath::Gaussian( c * args->meanFactor, args->stdev );
doubleArray->InsertNextValue( x );
}
}
inputData->AddColumn( doubleArray );
doubleArray->Delete();
}
// set up a single set of param data - send out to all and make tables...
vtkTable* paramData = vtkTable::New();
vtkIdTypeArray* paramCluster;
vtkDoubleArray* paramArray;
paramCluster = vtkIdTypeArray::New();
paramCluster->SetName( "K" );
for( int nInRun = 0; nInRun < nClusters; nInRun++ )
{
paramCluster->InsertNextValue( nClusters );
}
paramData->AddColumn( paramCluster );
paramCluster->Delete();
int nClusterCoords = nClusters * nVariables;
double* clusterCoords = new double[nClusterCoords];
// generate data on one node only
if( myRank == args->ioRank )
{
int cIndex = 0;
for ( int v = 0; v < nVariables; ++ v )
{
for ( int c = 0; c < nClusters; ++ c )
{
double x = inputData->GetValue( ( c % nClusters ) * obsPerCluster, v ).ToDouble();
clusterCoords[cIndex++] = x;
}
}
}
// broadcast data to all nodes
if( !com->Broadcast( clusterCoords, nClusterCoords, args->ioRank) )
{
vtkGenericWarningMacro("Could not broadcast initial cluster coordinates.");
*(args->retVal) = 1;
return;
}
for ( int v = 0; v < nVariables; ++ v )
{
paramArray = vtkDoubleArray::New();
paramArray->SetName( columnNames[v] );
paramArray->SetNumberOfTuples( nClusters );
memcpy( paramArray->GetPointer( 0 ), &( clusterCoords[v * ( nClusters )]), nClusters * sizeof( double ) );
paramData->AddColumn( paramArray );
paramArray->Delete();
}
delete [] clusterCoords;
// ************************** KMeans Statistics **************************
// Synchronize and start clock
com->Barrier();
vtkTimerLog *timer=vtkTimerLog::New();
timer->StartTimer();
// Instantiate a parallel KMeans statistics engine and set its ports
vtkPKMeansStatistics* pks = vtkPKMeansStatistics::New();
pks->SetInputData( vtkStatisticsAlgorithm::INPUT_DATA, inputData );
pks->SetMaxNumIterations( 10 );
pks->SetInputData( vtkStatisticsAlgorithm::LEARN_PARAMETERS, paramData );
// Select columns for testing
for ( int v = 0; v < nVariables; ++ v )
{
pks->SetColumnStatus( inputData->GetColumnName( v ) , 1 );
}
pks->RequestSelectedColumns();
// Test (in parallel) with Learn, Derive, and Assess options turned on
pks->SetLearnOption( true );
pks->SetDeriveOption( true );
pks->SetAssessOption( true );
pks->SetTestOption( false );
pks->Update();
// Synchronize and stop clock
com->Barrier();
timer->StopTimer();
if ( myRank == args->ioRank )
{
vtkMultiBlockDataSet* outputMetaDS = vtkMultiBlockDataSet::SafeDownCast( pks->GetOutputDataObject( vtkStatisticsAlgorithm::OUTPUT_MODEL ) );
cout << "\n## Completed parallel calculation of kmeans statistics (with assessment):\n"
<< " Wall time: "
<< timer->GetElapsedTime()
<< " sec.\n";
for ( unsigned int b = 0; b < outputMetaDS->GetNumberOfBlocks(); ++ b )
{
vtkTable* outputMeta = vtkTable::SafeDownCast( outputMetaDS->GetBlock( b ) );
if ( ! b )
{
vtkIdType testIntValue = 0;
for( vtkIdType r = 0; r < outputMeta->GetNumberOfRows(); r++ )
{
testIntValue += outputMeta->GetValueByName( r, "Cardinality" ).ToInt();
}
cout << "\n## Computed clusters (cardinality: "
<< testIntValue
<< " / run):\n";
if ( testIntValue != nVals * args->nProcs )
{
vtkGenericWarningMacro("Sum of cluster cardinalities is incorrect: "
<< testIntValue
<< " != "
<< nVals * args->nProcs
<< ".");
*(args->retVal) = 1;
}
}
else
{
cout << " Ranked cluster: " << "\n";
}
outputMeta->Dump();
}
}
// Clean up
pks->Delete();
inputData->Delete();
timer->Delete();
paramData->Delete();
}
}
//----------------------------------------------------------------------------
int TestRandomPKMeansStatisticsMPI( int argc, char* argv[] )
{
// **************************** MPI Initialization ***************************
vtkMPIController* controller = vtkMPIController::New();
controller->Initialize( &argc, &argv );
// If an MPI controller was not created, terminate in error.
if ( ! controller->IsA( "vtkMPIController" ) )
{
vtkGenericWarningMacro("Failed to initialize a MPI controller.");
controller->Delete();
return 1;
}
vtkMPICommunicator* com = vtkMPICommunicator::SafeDownCast( controller->GetCommunicator() );
// ************************** Find an I/O node ********************************
int* ioPtr;
int ioRank;
int flag;
MPI_Comm_get_attr( MPI_COMM_WORLD,
MPI_IO,
&ioPtr,
&flag );
if ( ( ! flag ) || ( *ioPtr == MPI_PROC_NULL ) )
{
// Getting MPI attributes did not return any I/O node found.
ioRank = MPI_PROC_NULL;
vtkGenericWarningMacro("No MPI I/O nodes found.");
// As no I/O node was found, we need an unambiguous way to report the problem.
// This is the only case when a testValue of -1 will be returned
controller->Finalize();
controller->Delete();
return -1;
}
else
{
if ( *ioPtr == MPI_ANY_SOURCE )
{
// Anyone can do the I/O trick--just pick node 0.
ioRank = 0;
}
else
{
// Only some nodes can do I/O. Make sure everyone agrees on the choice (min).
com->AllReduce( ioPtr,
&ioRank,
1,
vtkCommunicator::MIN_OP );
}
}
if ( com->GetLocalProcessId() == ioRank )
{
cout << "\n# Process "
<< ioRank
<< " will be the I/O node.\n";
}
// Check how many processes have been made available
int numProcs = controller->GetNumberOfProcesses();
if ( controller->GetLocalProcessId() == ioRank )
{
cout << "\n# Running test with "
<< numProcs
<< " processes...\n";
}
// **************************** Parse command line ***************************
// Set default argument values
int nObsPerCluster = 1000;
int nVariables = 6;
int nClusters = 8;
double meanFactor = 7.;
double stdev = 1.;
// Initialize command line argument parser
vtksys::CommandLineArguments clArgs;
clArgs.Initialize( argc, argv );
clArgs.StoreUnusedArguments( false );
// Parse per-process cardinality of each pseudo-random sample
clArgs.AddArgument("--n-per-proc-per-cluster",
vtksys::CommandLineArguments::SPACE_ARGUMENT,
&nObsPerCluster, "Per-process number of observations per cluster");
// Parse number of variables
clArgs.AddArgument("--n-variables",
vtksys::CommandLineArguments::SPACE_ARGUMENT,
&nVariables, "Number of variables");
// Parse number of clusters
clArgs.AddArgument("--n-clusters",
vtksys::CommandLineArguments::SPACE_ARGUMENT,
&nClusters, "Number of clusters");
// Parse mean factor of each pseudo-random sample
clArgs.AddArgument("--mean-factor",
vtksys::CommandLineArguments::SPACE_ARGUMENT,
&meanFactor, "Mean factor of each pseudo-random sample");
// Parse standard deviation of each pseudo-random sample
clArgs.AddArgument("--std-dev",
vtksys::CommandLineArguments::SPACE_ARGUMENT,
&stdev, "Standard deviation of each pseudo-random sample");
// If incorrect arguments were provided, provide some help and terminate in error.
if ( ! clArgs.Parse() )
{
if ( com->GetLocalProcessId() == ioRank )
{
cerr << "Usage: "
<< clArgs.GetHelp()
<< "\n";
}
controller->Finalize();
controller->Delete();
return 1;
}
// ************************** Initialize test *********************************
// Parameters for regression test.
int testValue = 0;
RandomSampleStatisticsArgs args;
args.nObsPerCluster = nObsPerCluster;
args.nProcs = numProcs;
args.nVariables = nVariables;
args.nClusters = nClusters;
args.meanFactor = meanFactor;
args.stdev = stdev;
args.retVal = &testValue;
args.ioRank = ioRank;
// Execute the function named "process" on both processes
controller->SetSingleMethod( RandomSampleStatistics, &args );
controller->SingleMethodExecute();
// Clean up and exit
if ( com->GetLocalProcessId() == ioRank )
{
cout << "\n# Test completed.\n\n";
}
controller->Finalize();
controller->Delete();
return testValue;
}
|