File: TestRandomPKMeansStatisticsMPI.cxx

package info (click to toggle)
vtk7 7.1.1%2Bdfsg2-8
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 127,396 kB
  • sloc: cpp: 1,539,584; ansic: 124,382; python: 78,038; tcl: 47,013; xml: 8,142; yacc: 5,040; java: 4,439; perl: 3,132; lex: 1,926; sh: 1,500; makefile: 126; objc: 83
file content (403 lines) | stat: -rw-r--r-- 12,005 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    TestRandomPKMeansStatisticsMPI.cxx

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
/*
 * Copyright 2011 Sandia Corporation.
 * Under the terms of Contract DE-AC04-94AL85000, there is a non-exclusive
 * license for use of this work by or on behalf of the
 * U.S. Government. Redistribution and use in source and binary forms, with
 * or without modification, are permitted provided that this Notice and any
 * statement of authorship are reproduced on all copies.
 */
// .SECTION Thanks
// Thanks to Janine Bennett, Philippe Pebay, and David Thompson from Sandia National Laboratories
// for implementing this test.

#include <mpi.h>

#include "vtkPKMeansStatistics.h"

#include "vtkMath.h"
#include "vtkMPIController.h"
#include "vtkMultiBlockDataSet.h"
#include "vtkStdString.h"
#include "vtkTable.h"
#include "vtkTimerLog.h"
#include "vtkVariantArray.h"
#include "vtkIdTypeArray.h"
#include "vtkDoubleArray.h"

#include "vtksys/CommandLineArguments.hxx"

#include <sstream>
#include <vector>

namespace
{

struct RandomSampleStatisticsArgs
{
  int nObsPerCluster;
  int nProcs;
  int nVariables;
  int nClusters;
  double meanFactor;
  double stdev;
  int* retVal;
  int ioRank;
};

// This will be called by all processes
void RandomSampleStatistics( vtkMultiProcessController* controller, void* arg )
{
  // Get test parameters
  RandomSampleStatisticsArgs* args = reinterpret_cast<RandomSampleStatisticsArgs*>( arg );
  *(args->retVal) = 0;

  // Get MPI communicator
  vtkMPICommunicator* com = vtkMPICommunicator::SafeDownCast( controller->GetCommunicator() );

  // Get local rank
  int myRank = com->GetLocalProcessId();

  // Seed random number generator
  vtkMath::RandomSeed( static_cast<int>( vtkTimerLog::GetUniversalTime() ) * ( myRank + 1 ) );

  // Generate column names
  int nVariables = args->nVariables;
  std::vector<vtkStdString> columnNames;
  for ( int v = 0; v < nVariables; ++ v )
  {
    std::ostringstream columnName;
    columnName << "Variable " << v;
    columnNames.push_back( columnName.str() );
  }

  // Generate an input table that contains samples of mutually independent Gaussian random variables
  vtkTable* inputData = vtkTable::New();
  vtkDoubleArray* doubleArray;

  int obsPerCluster = args->nObsPerCluster;
  int nClusters = args->nClusters;
  int nVals = obsPerCluster * nClusters;

  // Generate samples
  for ( int v = 0; v < nVariables; ++ v )
  {
    doubleArray = vtkDoubleArray::New();
    doubleArray->SetNumberOfComponents( 1 );
    doubleArray->SetName( columnNames.at( v ) );

    for ( int c = 0; c < nClusters; ++ c )
    {
      double x;
      for ( int r = 0; r < obsPerCluster; ++ r )
      {
        x = vtkMath::Gaussian( c * args->meanFactor, args->stdev );
        doubleArray->InsertNextValue( x );
      }
    }

    inputData->AddColumn( doubleArray );
    doubleArray->Delete();
  }

  // set up a single set of param data - send out to all and make tables...
  vtkTable* paramData = vtkTable::New();
  vtkIdTypeArray* paramCluster;
  vtkDoubleArray* paramArray;
  paramCluster = vtkIdTypeArray::New();
  paramCluster->SetName( "K" );

  for( int nInRun = 0; nInRun < nClusters; nInRun++ )
  {
    paramCluster->InsertNextValue( nClusters );
  }

  paramData->AddColumn( paramCluster );
  paramCluster->Delete();

  int nClusterCoords = nClusters * nVariables;
  double* clusterCoords = new double[nClusterCoords];

  // generate data on one node only
  if( myRank == args->ioRank )
  {
    int cIndex = 0;
    for ( int v = 0; v < nVariables; ++ v )
    {
      for ( int c = 0; c < nClusters; ++ c )
      {
        double x = inputData->GetValue( ( c % nClusters ) * obsPerCluster, v ).ToDouble();
        clusterCoords[cIndex++] = x;
      }
    }
  }

  // broadcast data to all nodes
  if( !com->Broadcast( clusterCoords, nClusterCoords, args->ioRank) )
  {
    vtkGenericWarningMacro("Could not broadcast initial cluster coordinates.");
    *(args->retVal) = 1;
    return;
  }

  for ( int v = 0; v < nVariables; ++ v )
  {
    paramArray = vtkDoubleArray::New();
    paramArray->SetName( columnNames[v] );
    paramArray->SetNumberOfTuples( nClusters );
    memcpy( paramArray->GetPointer( 0 ), &( clusterCoords[v * ( nClusters )]), nClusters * sizeof( double ) );
    paramData->AddColumn( paramArray );
    paramArray->Delete();
  }

  delete [] clusterCoords;

  // ************************** KMeans Statistics **************************

  // Synchronize and start clock
  com->Barrier();
  vtkTimerLog *timer=vtkTimerLog::New();
  timer->StartTimer();

  // Instantiate a parallel KMeans statistics engine and set its ports
  vtkPKMeansStatistics* pks = vtkPKMeansStatistics::New();
  pks->SetInputData( vtkStatisticsAlgorithm::INPUT_DATA, inputData );
  pks->SetMaxNumIterations( 10 );
  pks->SetInputData( vtkStatisticsAlgorithm::LEARN_PARAMETERS, paramData );

  // Select columns for testing
  for ( int v = 0; v < nVariables; ++ v )
  {
    pks->SetColumnStatus( inputData->GetColumnName( v ) , 1 );
  }
  pks->RequestSelectedColumns();

  // Test (in parallel) with Learn, Derive, and Assess options turned on
  pks->SetLearnOption( true );
  pks->SetDeriveOption( true );
  pks->SetAssessOption( true );
  pks->SetTestOption( false );
  pks->Update();

  // Synchronize and stop clock
  com->Barrier();
  timer->StopTimer();

  if ( myRank == args->ioRank )
  {
    vtkMultiBlockDataSet* outputMetaDS = vtkMultiBlockDataSet::SafeDownCast( pks->GetOutputDataObject( vtkStatisticsAlgorithm::OUTPUT_MODEL ) );

    cout << "\n## Completed parallel calculation of kmeans statistics (with assessment):\n"
         << "   Wall time: "
         << timer->GetElapsedTime()
         << " sec.\n";
    for ( unsigned int b = 0; b < outputMetaDS->GetNumberOfBlocks(); ++ b )
    {
      vtkTable* outputMeta = vtkTable::SafeDownCast( outputMetaDS->GetBlock( b ) );
      if ( ! b )
      {
        vtkIdType testIntValue = 0;
        for( vtkIdType r = 0; r < outputMeta->GetNumberOfRows(); r++ )
        {
          testIntValue += outputMeta->GetValueByName( r, "Cardinality" ).ToInt();
        }

        cout << "\n## Computed clusters (cardinality: "
             << testIntValue
             << " / run):\n";

        if ( testIntValue != nVals * args->nProcs )
        {
          vtkGenericWarningMacro("Sum of cluster cardinalities is incorrect: "
                               << testIntValue
                               << " != "
                               << nVals * args->nProcs
                               << ".");
          *(args->retVal) = 1;
        }
      }
      else
      {
        cout << "   Ranked cluster: " << "\n";
      }
        outputMeta->Dump();
    }
  }
  // Clean up
  pks->Delete();
  inputData->Delete();
  timer->Delete();
  paramData->Delete();

}

}

//----------------------------------------------------------------------------
int TestRandomPKMeansStatisticsMPI( int argc, char* argv[] )
{
  // **************************** MPI Initialization ***************************
  vtkMPIController* controller = vtkMPIController::New();
  controller->Initialize( &argc, &argv );

  // If an MPI controller was not created, terminate in error.
  if ( ! controller->IsA( "vtkMPIController" ) )
  {
    vtkGenericWarningMacro("Failed to initialize a MPI controller.");
    controller->Delete();
    return 1;
  }

  vtkMPICommunicator* com = vtkMPICommunicator::SafeDownCast( controller->GetCommunicator() );

  // ************************** Find an I/O node ********************************
  int* ioPtr;
  int ioRank;
  int flag;

  MPI_Comm_get_attr( MPI_COMM_WORLD,
                MPI_IO,
                &ioPtr,
                &flag );

  if ( ( ! flag ) || ( *ioPtr == MPI_PROC_NULL ) )
  {
    // Getting MPI attributes did not return any I/O node found.
    ioRank = MPI_PROC_NULL;
    vtkGenericWarningMacro("No MPI I/O nodes found.");

    // As no I/O node was found, we need an unambiguous way to report the problem.
    // This is the only case when a testValue of -1 will be returned
    controller->Finalize();
    controller->Delete();

    return -1;
  }
  else
  {
    if ( *ioPtr == MPI_ANY_SOURCE )
    {
      // Anyone can do the I/O trick--just pick node 0.
      ioRank = 0;
    }
    else
    {
      // Only some nodes can do I/O. Make sure everyone agrees on the choice (min).
      com->AllReduce( ioPtr,
                      &ioRank,
                      1,
                      vtkCommunicator::MIN_OP );
    }
  }

  if ( com->GetLocalProcessId() == ioRank )
  {
    cout << "\n# Process "
         << ioRank
         << " will be the I/O node.\n";
  }

  // Check how many processes have been made available
  int numProcs = controller->GetNumberOfProcesses();
  if ( controller->GetLocalProcessId() == ioRank )
  {
    cout << "\n# Running test with "
         << numProcs
         << " processes...\n";
  }

  // **************************** Parse command line ***************************
  // Set default argument values
  int nObsPerCluster = 1000;
  int nVariables = 6;
  int nClusters = 8;
  double meanFactor = 7.;
  double stdev = 1.;

  // Initialize command line argument parser
  vtksys::CommandLineArguments clArgs;
  clArgs.Initialize( argc, argv );
  clArgs.StoreUnusedArguments( false );

  // Parse per-process cardinality of each pseudo-random sample
  clArgs.AddArgument("--n-per-proc-per-cluster",
                     vtksys::CommandLineArguments::SPACE_ARGUMENT,
                     &nObsPerCluster, "Per-process number of observations per cluster");

  // Parse number of variables
  clArgs.AddArgument("--n-variables",
                     vtksys::CommandLineArguments::SPACE_ARGUMENT,
                     &nVariables, "Number of variables");

  // Parse number of clusters
  clArgs.AddArgument("--n-clusters",
                     vtksys::CommandLineArguments::SPACE_ARGUMENT,
                     &nClusters, "Number of clusters");

  // Parse mean factor of each pseudo-random sample
  clArgs.AddArgument("--mean-factor",
                     vtksys::CommandLineArguments::SPACE_ARGUMENT,
                     &meanFactor, "Mean factor of each pseudo-random sample");

  // Parse standard deviation of each pseudo-random sample
  clArgs.AddArgument("--std-dev",
                     vtksys::CommandLineArguments::SPACE_ARGUMENT,
                     &stdev, "Standard deviation of each pseudo-random sample");

  // If incorrect arguments were provided, provide some help and terminate in error.
  if ( ! clArgs.Parse() )
  {
    if ( com->GetLocalProcessId() == ioRank )
    {
      cerr << "Usage: "
           << clArgs.GetHelp()
           << "\n";
    }

    controller->Finalize();
    controller->Delete();

    return 1;
  }

  // ************************** Initialize test *********************************
  // Parameters for regression test.
  int testValue = 0;
  RandomSampleStatisticsArgs args;
  args.nObsPerCluster = nObsPerCluster;
  args.nProcs = numProcs;
  args.nVariables = nVariables;
  args.nClusters = nClusters;
  args.meanFactor = meanFactor;
  args.stdev = stdev;
  args.retVal = &testValue;
  args.ioRank = ioRank;

  // Execute the function named "process" on both processes
  controller->SetSingleMethod( RandomSampleStatistics, &args );
  controller->SingleMethodExecute();

  // Clean up and exit
  if ( com->GetLocalProcessId() == ioRank )
  {
    cout << "\n# Test completed.\n\n";
  }

  controller->Finalize();
  controller->Delete();

  return testValue;
}