File: MultidimensionalSolution.tcl

package info (click to toggle)
vtk7 7.1.1%2Bdfsg2-8
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 127,396 kB
  • sloc: cpp: 1,539,584; ansic: 124,382; python: 78,038; tcl: 47,013; xml: 8,142; yacc: 5,040; java: 4,439; perl: 3,132; lex: 1,926; sh: 1,500; makefile: 126; objc: 83
file content (209 lines) | stat: -rw-r--r-- 6,673 bytes parent folder | download | duplicates (12)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
#
# The dataset read by this exercise ("combVectors.vtk") has field data
# associated with the pointdata, namely two vector fields. In this exercise,
# you will convert both sets of field data into attribute data. Mappers only
# process attribute data, not field data. So we must convert the field data to
# attribute data in order to display it.  (You'll need to determine the "names"
# of the two vector fields in the field data.)
#
# If there is time remaining, you might consider adding a programmable filter
# to convert the two sets of vectors into a single scalar field, representing
# the angle between the two vector fields.
#
# You will most likely use vtkFieldDataToAttributeDataFilter, vtkHedgeHog,
# and vtkProgrammableAttributeDataFilter.
#
package require vtk
package require vtkinteraction

# Create the RenderWindow, Renderer and interactor
#
vtkRenderer ren1
vtkRenderWindow renWin
    renWin SetMultiSamples 0
    renWin AddRenderer ren1
vtkRenderWindowInteractor iren
    iren SetRenderWindow renWin

# create pipeline
#

# get the pressure gradient vector field
vtkMultiBlockPLOT3DReader pl3d_gradient
    pl3d_gradient SetXYZFileName "$VTK_DATA_ROOT/Data/combxyz.bin"
    pl3d_gradient SetQFileName "$VTK_DATA_ROOT/Data/combq.bin"
    pl3d_gradient SetScalarFunctionNumber 100
    pl3d_gradient SetVectorFunctionNumber 210
    pl3d_gradient Update
    set pl3d_g_output [[pl3d_gradient GetOutput] GetBlock 0]

# get the velocity vector field
vtkMultiBlockPLOT3DReader pl3d_velocity
    pl3d_velocity SetXYZFileName "$VTK_DATA_ROOT/Data/combxyz.bin"
    pl3d_velocity SetQFileName "$VTK_DATA_ROOT/Data/combq.bin"
    pl3d_velocity SetScalarFunctionNumber 100
    pl3d_velocity SetVectorFunctionNumber 200
    pl3d_velocity Update
    set pl3d_v_output [[pl3d_velocity GetOutput] GetBlock 0]


# contour the scalar fields
vtkContourFilter contour
contour SetInputData $pl3d_g_output
contour SetValue 0 0.225

# probe the vector fields to get data at the contour surface
vtkProbeFilter probe_gradient
probe_gradient SetInputConnection [contour GetOutputPort]
probe_gradient SetSourceData $pl3d_g_output

vtkProbeFilter probe_velocity
probe_velocity SetInputConnection [contour GetOutputPort]
probe_velocity SetSourceData $pl3d_v_output

#
# To display the vector fields, we use vtkHedgeHog to create lines.
#
vtkHedgeHog velocity
velocity SetInputConnection [probe_velocity GetOutputPort]
velocity SetScaleFactor 0.0015

vtkHedgeHog pressureGradient
pressureGradient SetInputConnection [probe_gradient GetOutputPort]
pressureGradient SetScaleFactor 0.00002


proc ExecuteDot {} {
   # proc for ProgrammableAttributeDataFilter.  Note the use of "double()"
   # in the calculations.  This protects us from Tcl using ints and
   # overflowing.

   set inputs [dotProduct GetInputList]
   set input0 [$inputs GetDataSet 0]
   set input1 [$inputs GetDataSet 1]
   set numPts [$input0 GetNumberOfPoints]

   set vectors0 [[$input0 GetPointData] GetVectors]
   set vectors1 [[$input1 GetPointData] GetVectors]

   vtkFloatArray scalars

   for {set i 0} {$i < $numPts} {incr i} {
       set v0 [$vectors0 GetTuple3 $i]
       set v1 [$vectors1 GetTuple3 $i]

       set v0x [lindex $v0 0]
       set v0y [lindex $v0 1]
       set v0z [lindex $v0 2]

       set v1x [lindex $v1 0]
       set v1y [lindex $v1 1]
       set v1z [lindex $v1 2]

       set l0 [expr double($v0x)*double($v0x) + double($v0y)*double($v0y) \
          + double($v0z)*double($v0z)]
       set l1 [expr double($v1x)*double($v1x) + double($v1y)*double($v1y) \
          + double($v1z)*double($v1z)]

       set l0 [expr sqrt(double($l0))]
       set l1 [expr sqrt(double($l1))]

       if {$l0 > 0.0 && $l1 > 0.0} {
	   set d [expr (double($v0x)*double($v1x) + double($v0y)*double($v1y)\
              + double($v0z)*double($v1z))/($l0*$l1)]
       } else {
	   set d 0.0
       }

       scalars InsertValue $i $d
    }

    [[dotProduct GetOutput] GetPointData] SetScalars scalars

    scalars Delete
}

#
# We use the ProgrammableAttributeDataFilter to compute the cosine
# of the angle between the two vector fields (i.e. the dot product
# normalized by the product of the vector lengths).
#
#
vtkProgrammableAttributeDataFilter dotProduct
dotProduct SetInputConnection [probe_velocity GetOutputPort]
dotProduct AddInput [probe_velocity GetOutput]
dotProduct AddInput [probe_gradient GetOutput]
dotProduct SetExecuteMethod ExecuteDot

#
# Create the mappers and actors.  Note the call to GetPolyDataOutput when
# setting up the mapper for the ProgrammableAttributeDataFilter
#
vtkPolyDataMapper velocityMapper
    velocityMapper SetInputConnection [velocity GetOutputPort]
    velocityMapper ScalarVisibilityOff

vtkLODActor velocityActor
    velocityActor SetMapper velocityMapper
    velocityActor SetNumberOfCloudPoints 1000
    eval [velocityActor GetProperty] SetColor 1 0 0

vtkPolyDataMapper pressureGradientMapper
    pressureGradientMapper SetInputConnection [pressureGradient GetOutputPort]
    pressureGradientMapper ScalarVisibilityOff

vtkLODActor pressureGradientActor
    pressureGradientActor SetMapper pressureGradientMapper
    pressureGradientActor SetNumberOfCloudPoints 1000
    eval [pressureGradientActor GetProperty] SetColor 0 1 0

vtkPolyDataMapper dotMapper
    dotMapper SetInputConnection [dotProduct GetOutputPort]
    dotMapper SetScalarRange -1 1

vtkLODActor dotActor
    dotActor SetMapper dotMapper
    dotActor SetNumberOfCloudPoints 1000

#
# The PLOT3DReader is used to draw the outline of the original dataset.
#
vtkMultiBlockPLOT3DReader pl3d
    pl3d SetXYZFileName "$VTK_DATA_ROOT/Data/combxyz.bin"
    pl3d Update
    set pl3d_output [[pl3d GetOutput] GetBlock 0]

vtkStructuredGridOutlineFilter outline
    outline SetInputData $pl3d_output
vtkPolyDataMapper outlineMapper
    outlineMapper SetInputConnection [outline GetOutputPort]
vtkActor outlineActor
    outlineActor SetMapper outlineMapper
    [outlineActor GetProperty] SetColor 0 0 0

#
# Add the actors to the renderer, set the background and size
#
ren1 AddActor outlineActor
ren1 AddActor velocityActor
ren1 AddActor pressureGradientActor
ren1 AddActor dotActor
ren1 SetBackground 1 1 1
renWin SetSize 500 500
#ren1 SetBackground 0.1 0.2 0.4

set cam1 [ren1 GetActiveCamera]
$cam1 SetClippingRange 3.95297 50
$cam1 SetFocalPoint 9.71821 0.458166 29.3999
$cam1 SetPosition -21.6807 -22.6387 35.9759
$cam1 SetViewUp -0.0158865 0.293715 0.955761

# render the image
#
iren AddObserver UserEvent {wm deiconify .vtkInteract}

renWin Render
renWin SetWindowName "Multidimensional Visualization Exercise"

# prevent the tk window from showing up then start the event loop
wm withdraw .