1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
|
/*=========================================================================
Program: Visualization Toolkit
Module: vtkParallelopipedRepresentation.cxx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkParallelopipedRepresentation.h"
#include "vtkSmartPointer.h"
#include "vtkActor.h"
#include "vtkCamera.h"
#include "vtkCellArray.h"
#include "vtkDoubleArray.h"
#include "vtkMath.h"
#include "vtkObjectFactory.h"
#include "vtkPolyData.h"
#include "vtkPolyDataMapper.h"
#include "vtkProperty.h"
#include "vtkRenderWindowInteractor.h"
#include "vtkRenderer.h"
#include "vtkInteractorObserver.h"
#include "vtkEvent.h"
#include "vtkSphereHandleRepresentation.h"
#include "vtkLine.h"
#include "vtkClosedSurfacePointPlacer.h"
#include "vtkPlaneCollection.h"
#include "vtkPlane.h"
#include <vector>
#include <set>
#include <algorithm>
//----------------------------------------------------------------------------
// This class manages topological information for a parallelopiped with a
// chair etched out at any node.
// README : Uncomment the line that reads "PrintTopology(cout) to
// understand what the class does. The goal of the class is succintly
// described in that one line.
class vtkParallelopipedTopology
{
public:
typedef struct Line { vtkIdType Id[2];
Line(vtkIdType a, vtkIdType b) { Id[0]=a; Id[1]=b; } } LineType;
typedef std::vector< vtkIdType > CellType;
typedef std::vector< CellType > CliqueType;
// Diametric opposite of Corner 0 = 6, 1 = 7, 2 = 4, 3 = 5.
// Mathematically, if a diametric corner is represented by a 3 bit value:
// abc, its diametric opposite = a'b'c.
static int GetDiametricOppositeOfCorner( int i )
{
return ((~i) & 0x6) | (i & 0x1);
}
// Get the corners connected to corner 'i'. There will be three such corners
void GetNeighbors( int c, vtkIdType neighborPtIds[3], int configuration = 0 ) const
{
std::set< vtkIdType > neighbors;
const CliqueType & clique = m_Topology[configuration];
for (CliqueType::const_iterator clit = clique.begin();
clit != clique.end(); ++clit)
{
if (std::find(clit->begin(), clit->end(), c) != clit->end())
{
const CellType cell = RotateCell( *clit, c );
neighbors.insert(cell[0]);
neighbors.insert(cell[cell.size()-2]);
}
}
int i = 0;
for (std::set< vtkIdType >::const_iterator it = neighbors.begin();
it != neighbors.end(); neighborPtIds[i++] = *it, ++it)
{
;
}
}
void GetNeighbors( vtkIdType node, vtkIdType neighborPtIds[3],
vtkCellArray *neighborCells, std::vector< LineType > & lines )
{
GetNeighbors( 8 + GetDiametricOppositeOfCorner(node), neighborPtIds, node+1 );
vtkIdType opposingNeighborPtIds[3],
opposite = GetDiametricOppositeOfCorner(node);
GetNeighbors( opposite, opposingNeighborPtIds );
std::vector< vtkIdType > nodes(2);
for (int i = 0; i < 3; i++)
{
nodes[0] = neighborPtIds[i];
for (int j = 0; j < 3; j++)
{
nodes[1] = opposingNeighborPtIds[j];
const CliqueType cells =
FindCellsContainingNodes( m_Topology[node+1], nodes );
if (cells.size())
{
PopulateTopology( cells, neighborCells );
lines.push_back( LineType(opposite, nodes[1]) );
}
}
}
}
void FindCellsContainingNodes( int configuration, vtkCellArray *cellArray,
const std::vector< vtkIdType > & nodes ) const
{
vtkParallelopipedTopology::PopulateTopology(
FindCellsContainingNodes( m_Topology[configuration], nodes), cellArray );
}
std::vector< CellType > FindCellsContainingNodes(
int configuration, const std::vector< vtkIdType > & nodes )
{ return FindCellsContainingNodes( m_Topology[configuration], nodes); }
vtkParallelopipedTopology()
{
// The topology of a parallelopiped.
CliqueType clique;
AddCellToClique(clique, 3,0,4,7);
AddCellToClique(clique, 1,2,6,5);
AddCellToClique(clique, 0,1,5,4);
AddCellToClique(clique, 2,3,7,6);
AddCellToClique(clique, 0,3,2,1);
AddCellToClique(clique, 4,5,6,7);
m_Topology.push_back(clique);
for ( vtkIdType i = 0; i < 8;
m_Topology.push_back( GetChairClique( i++, clique ) ) )
{
;
}
// README : The goal of the class is succintly described by the line below
// PrintTopology( cout );
}
// Populate topoplogy into a vtkCellArray.
// If configuration is 0, the topoology populated is that of a parallelopiped.
// If configuration > 0, the topology populated is that of a parallelopiped
// with a chair at node = (configuration - 1).
void PopulateTopology( int configuration, vtkCellArray * cellArray ) const
{ vtkParallelopipedTopology::PopulateTopology(
m_Topology[configuration], cellArray ); }
void PrintTopology(ostream &os) const
{
os << "Connectivity of Point Ids in a parallelopiped: " << endl;
PrintClique(m_Topology[0], os);
for (int i = 0; i < 8; i++)
{
os << "Connectivity of Point Ids in a parallelopiped "
<< "with chair carved out at node: " << i << endl;
PrintClique(m_Topology[i+1], os);
}
}
private:
void AddCellToClique( CliqueType & clique,
vtkIdType a, vtkIdType b, vtkIdType c, vtkIdType d)
{
CellType v(4);
v[0] = a; v[1] = b; v[2] = c; v[3] = d;
clique.push_back(v);
}
static CellType RotateCell( const CellType & cell, vtkIdType endval )
{
CellType outputCell;
for (CellType::const_iterator cit = cell.begin(); cit != cell.end(); ++cit)
{
outputCell.push_back(*cit);
if (*cit == endval) break;
}
for (CellType::const_reverse_iterator cit = cell.rbegin(); cit != cell.rend(); ++cit)
{
if (*cit == endval) break;
outputCell.insert(outputCell.begin(), *cit);
}
return outputCell;
}
static CellType ReverseCell( const CellType & cell )
{
CellType outputCell;
for (CellType::const_reverse_iterator cit = cell.rbegin(); cit != cell.rend(); ++cit)
outputCell.push_back(*cit);
return outputCell;
}
static CellType ChairCell( const CellType & cell )
{
CellType outputCell = ReverseCell(cell);
for (CellType::iterator cit = outputCell.begin(); cit != outputCell.end(); ++cit)
*cit += 8;
return outputCell;
}
static CellType ChairCell( vtkIdType c, const CellType & cell )
{
CellType tmpCell = RotateCell(cell, c);
CellType::iterator it = tmpCell.end();
tmpCell.erase(--it);
CellType outputCell = tmpCell;
for (CellType::reverse_iterator cit = tmpCell.rbegin(); cit != tmpCell.rend(); ++cit)
outputCell.push_back(*cit + 8);
return outputCell;
}
static CliqueType GetChairClique( vtkIdType c, const CliqueType & clique )
{
CliqueType outputClique;
for (CliqueType::const_iterator clit = clique.begin();
clit != clique.end(); ++clit)
{
if (std::find(clit->begin(), clit->end(), c) == clit->end())
{
outputClique.insert( outputClique.begin(), *clit );
outputClique.push_back( ChairCell(*clit) );
}
else
{
outputClique.insert( outputClique.begin(), ChairCell(c, *clit) );
}
}
return outputClique;
}
static void PopulateTopology( const CliqueType & clique, vtkCellArray * cellArray )
{
for (CliqueType::const_iterator clit = clique.begin();
clit != clique.end(); ++clit)
{
vtkIdType *ids = new vtkIdType[clit->size()];
int i = 0;
for (CellType::const_iterator cit = clit->begin();
cit != clit->end(); ids[i++] = *cit, ++cit )
{
;
}
cellArray->InsertNextCell( clit->size(), ids );
delete [] ids;
}
}
// Find all the cells in a given a configuration (specified by the clique)
// that contain the nodes. (specified by nodes). Each cell returned must
// contain all the nodes specified.
static std::vector< CellType > FindCellsContainingNodes(
const CliqueType & clique, const std::vector< vtkIdType > & nodes )
{
std::vector< CellType > cells;
for (CliqueType::const_iterator clit = clique.begin();
clit != clique.end(); ++clit)
{
bool found = true;
for (std::vector< vtkIdType >::const_iterator nit = nodes.begin();
nit != nodes.end(); ++nit)
found &= (std::find(clit->begin(), clit->end(), *nit) != clit->end());
if (found) cells.push_back(*clit);
}
return cells;
}
static void PrintCell( const CellType & cell, ostream &os )
{
for (CellType::const_iterator cit = cell.begin();
cit != cell.end(); os << *cit << " ", ++cit )
{
;
}
}
static void PrintClique( const CliqueType & clique, ostream &os )
{
os << " Clique has " << clique.size() << " cells." << endl;
for (CliqueType::const_iterator clit = clique.begin();
clit != clique.end(); ++clit)
{
os << " Cell PtIds: ";
PrintCell( *clit, os );
os << endl;
}
}
std::vector< CliqueType > m_Topology;
};
//----------------------------------------------------------------------------
vtkStandardNewMacro(vtkParallelopipedRepresentation);
vtkCxxSetObjectMacro(vtkParallelopipedRepresentation,
HandleProperty, vtkProperty);
vtkCxxSetObjectMacro(vtkParallelopipedRepresentation,
SelectedHandleProperty, vtkProperty);
vtkCxxSetObjectMacro(vtkParallelopipedRepresentation,
HoveredHandleProperty, vtkProperty);
//----------------------------------------------------------------------------
vtkParallelopipedRepresentation::vtkParallelopipedRepresentation()
{
// This contains all the connectivity information.
this->Topology = new vtkParallelopipedTopology;
this->LastEventPosition[0] = this->LastEventPosition[1] = 0.0;
// Construct the poly data representing the hex
this->HexPolyData = vtkPolyData::New();
this->HexMapper = vtkPolyDataMapper::New();
this->HexActor = vtkActor::New();
this->HexMapper->SetInputData(HexPolyData);
this->HexActor->SetMapper(this->HexMapper);
// 16 points from the parallelopiped and the chair (also modelled as a
// parallelopiped).
this->Points = vtkPoints::New(VTK_DOUBLE);
this->Points->SetNumberOfPoints(16);
this->HexPolyData->SetPoints(this->Points);
vtkCellArray *cellArray = vtkCellArray::New();
this->Topology->PopulateTopology( 0, cellArray );
this->HexPolyData->SetPolys(cellArray);
this->HexPolyData->BuildCells();
cellArray->Delete();
// The face of the polyhedron
vtkIdType pts[4] = { 4, 5, 6, 7 };
vtkCellArray * cells = vtkCellArray::New();
cells->Allocate(cells->EstimateSize(1,4));
cells->InsertNextCell(4,pts); //temporary, replaced later
this->HexFacePolyData = vtkPolyData::New();
this->HexFaceMapper = vtkPolyDataMapper::New();
this->HexFaceActor = vtkActor::New();
this->HexFacePolyData->SetPoints(this->Points);
this->HexFacePolyData->SetPolys(cells);
this->HexFaceMapper->SetInputData(HexFacePolyData);
this->HexFaceActor->SetMapper(this->HexFaceMapper);
cells->Delete();
// Set some default properties.
// Handle properties
this->HandleProperty = vtkProperty::New();
this->SelectedHandleProperty = vtkProperty::New();
this->HoveredHandleProperty = vtkProperty::New();
this->HandleProperty ->SetColor(1.0,1.0,0.7);
this->SelectedHandleProperty->SetColor(1.0,0.2,0.1);
this->HoveredHandleProperty ->SetColor(1.0,0.7,0.5);
// Face properties
this->FaceProperty = vtkProperty::New();
this->SelectedFaceProperty = vtkProperty::New();
this->FaceProperty ->SetColor(1,1,1);
this->SelectedFaceProperty->SetColor(0,0,1);
this->FaceProperty->SetOpacity(0.0);
this->SelectedFaceProperty->SetOpacity(0.25);
// Outline properties (for the hex and the chair)
this->OutlineProperty = vtkProperty::New();
this->OutlineProperty->SetRepresentationToWireframe();
this->OutlineProperty->SetAmbient(1.0);
this->OutlineProperty->SetAmbientColor(1.0,1.0,1.0);
this->OutlineProperty->SetLineWidth(2.0);
this->SelectedOutlineProperty = vtkProperty::New();
this->SelectedOutlineProperty->SetRepresentationToWireframe();
this->SelectedOutlineProperty->SetAmbient(1.0);
this->SelectedOutlineProperty->SetAmbientColor(0.0,0.0,1.0);
this->SelectedOutlineProperty->SetLineWidth(2.0);
this->HexActor->SetProperty(this->OutlineProperty);
this->HexFaceActor->SetProperty(this->FaceProperty);
// Handle looks like a sphere.
this->HandleRepresentation = NULL;
this->HandleRepresentations = NULL;
vtkSphereHandleRepresentation * hRep = vtkSphereHandleRepresentation::New();
this->SetHandleRepresentation(hRep);
hRep->Delete();
this->CurrentHandleIdx = -1;
this->LastResizeAxisIdx = -1;
this->ChairHandleIdx = -1;
// Point placer to dictate placement of the chair point inside the
// parallelopiped.
this->ChairPointPlacer = vtkClosedSurfacePointPlacer::New();
this->InitialChairDepth = 0.25;
this->MinimumThickness = 0.05;
this->AbsoluteMinimumThickness = 0.05;
this->PlaceFactor = 1.0;
// Define the point coordinates and initial placement of the widget
double bounds[6] = { -0.5, 0.5, -0.5, 0.5, -0.5, 0.5 };
this->PlaceWidget(bounds);
}
//----------------------------------------------------------------------------
vtkParallelopipedRepresentation::~vtkParallelopipedRepresentation()
{
this->HexActor->Delete();
this->HexMapper->Delete();
this->HexPolyData->Delete();
this->Points->Delete();
this->HexFaceActor->Delete();
this->HexFaceMapper->Delete();
this->HexFacePolyData->Delete();
this->SetHandleRepresentation(NULL);
this->FaceProperty->Delete();
this->SelectedFaceProperty->Delete();
this->OutlineProperty->Delete();
this->SelectedOutlineProperty->Delete();
this->SetHandleProperty ( NULL );
this->SetSelectedHandleProperty ( NULL );
this->SetHoveredHandleProperty ( NULL );
this->ChairPointPlacer->Delete();
delete this->Topology;
}
//----------------------------------------------------------------------------
vtkHandleRepresentation* vtkParallelopipedRepresentation
::GetHandleRepresentation( int handleIndex )
{
return (handleIndex > 7) ? NULL : this->HandleRepresentations[handleIndex];
}
//----------------------------------------------------------------------
// You can swap the handle representation to one that you like.
void vtkParallelopipedRepresentation
::SetHandleRepresentation(vtkHandleRepresentation *handle)
{
if ( handle == this->HandleRepresentation )
{
return;
}
vtkSetObjectBodyMacro( HandleRepresentation,
vtkHandleRepresentation, handle );
if (this->HandleRepresentation)
{
// Allocate the 8 handles if they haven't been allocated.
if (!this->HandleRepresentations)
{
this->HandleRepresentations = new vtkHandleRepresentation* [8];
for (int i=0; i<8; this->HandleRepresentations[i++] = NULL)
{
;
}
}
}
else
{
// Free the 8 handles if they haven't been freed.
if (this->HandleRepresentations)
{
for (int i=0; i<8; this->HandleRepresentations[i++]->Delete())
{
;
}
delete [] this->HandleRepresentations;
this->HandleRepresentations = NULL;
}
}
for (int i=0; i<8; i++)
{
// We will remove the old handle, in anticipation of the new user-
// provided handle type that we are going to set a few lines later.
if (this->HandleRepresentations && this->HandleRepresentations[i])
{
this->HandleRepresentations[i]->Delete();
this->HandleRepresentations[i] = NULL;
}
// Copy the new user-provided handle.
if (this->HandleRepresentation)
{
this->HandleRepresentations[i] = this->HandleRepresentation->NewInstance();
this->HandleRepresentations[i]->ShallowCopy(this->HandleRepresentation);
}
}
}
//----------------------------------------------------------------------
// Remove any existing chairs in the parallelopiped.
void vtkParallelopipedRepresentation::RemoveExistingChairs()
{
// If we have a chair. A chair has 9 faces as opposed to a parallelopiped
// which has 6 faces.
if (this->HexPolyData->GetPolys()->GetNumberOfCells() == 9)
{
// Go back to the topology of a parallelopiped.
vtkCellArray *parallelopipedcells = vtkCellArray::New();
this->Topology->PopulateTopology( 0, parallelopipedcells );
this->HexPolyData->SetPolys(parallelopipedcells);
this->HexPolyData->BuildCells();
parallelopipedcells->Delete();
// Bring the node that had the chair back to the 4th corner of the
// parallelopiped. We will use vector addition by finding the 4th point of
// a parallelogram from the other 3 points.
vtkIdType neighborPtIds[3], npts = 0, *cellPtIds = NULL;
this->Topology->GetNeighbors( this->ChairHandleIdx, neighborPtIds );
// First find 4 points that form a parallelogram and contain the chaired
// handle. The pointIds shall be stored in "nodes"
vtkParallelopipedTopology::CellType nodes(3);
nodes[0] = this->ChairHandleIdx;
nodes[1] = neighborPtIds[0];
nodes[2] = neighborPtIds[1];
vtkSmartPointer< vtkCellArray > cells = vtkSmartPointer<vtkCellArray>::New();
this->Topology->FindCellsContainingNodes( 0, cells, nodes );
cells->InitTraversal();
cells->GetNextCell(npts, cellPtIds);
// Find the 4th pointId.
int j = 0;
while (cellPtIds[j] == nodes[0]
|| cellPtIds[j] == nodes[1]
|| cellPtIds[j] == nodes[2]) ++j;
nodes.push_back(cellPtIds[j]);
// Now go about finding the 4th point (Index 0) in the parallelogram..
// 0 ------ 1
// | |
// 2 ------ 3
//
double p[4][3]; // for 4 points.. 3 we know, 4th to find..
this->Points->GetPoint( nodes[3], p[0] );
this->Points->GetPoint( nodes[1], p[1] );
this->Points->GetPoint( nodes[2], p[2] );
p[3][0] = p[1][0] + p[2][0] - p[0][0];
p[3][1] = p[1][1] + p[2][1] - p[0][1];
p[3][2] = p[1][2] + p[2][2] - p[0][2];
this->Points->SetPoint( nodes[0], p[3] );
this->ChairHandleIdx = -1;
}
}
//----------------------------------------------------------------------
// Node can be an integer within [0,7]. This will create a chair one one of
// the handle corners. The '0 < scale < 1' value dicates the starting
// depth of the cavity.
void vtkParallelopipedRepresentation::UpdateChairAtNode( int node )
{
vtkIdType npts = 0, *cellPtIds = NULL;
// If we have a chair somewhere else, remove it. We can have only one
// chair at a time.
if (this->CurrentHandleIdx != this->ChairHandleIdx &&
this->HexPolyData->GetPolys()->GetNumberOfCells() == 9)
{
this->RemoveExistingChairs();
}
this->ChairHandleIdx = node;
// If we already don't have a chair, create one. (a chair has 6 faces,
// unlike a parallelopiped).
if (this->HexPolyData->GetPolys()->GetNumberOfCells() != 9)
{
// chair has 14 points, but we will model this with 2 parallelopipeds.
// Hence 16 points. Look at vtkParallelopipedTopology for details.
// Scale points with respect to the node.
double origin[3], d[3];
this->Points->GetPoint( node, origin );
for (int i = 0; i < 8 ; i++)
{
this->Points->GetPoint(i, d);
d[0] = (d[0] - origin[0]) * this->InitialChairDepth + origin[0];
d[1] = (d[1] - origin[1]) * this->InitialChairDepth + origin[1];
d[2] = (d[2] - origin[2]) * this->InitialChairDepth + origin[2];
this->Points->SetPoint(i+8, d);
}
this->Points->SetPoint( node, this->Points->GetPoint(
vtkParallelopipedTopology::GetDiametricOppositeOfCorner(node) + 8));
vtkSmartPointer< vtkCellArray > cells = vtkSmartPointer<vtkCellArray>::New();
this->Topology->PopulateTopology( node + 1, cells );
this->HexPolyData->SetPolys(cells);
this->HexPolyData->BuildCells();
// Synchronize the handle representations with our recently updated
// "Points" data-structure.
this->PositionHandles();
}
else
{
// We do have a chair. Update the points in the chair by taking the
// projection of the chaired node onto the axes of the parallelopiped.
// These three PtIds are those that lie on the chair and are connected via
// a line to the "Chair node" in question. It is the position of these 3
// points that we seek to find in the next few lines.
vtkIdType neighborPtIds[3];
// This will contain the 3 faces that lie on the parallelopiped and have
// a chair carved out in them. As you know, we are about to compute the
// points at the carved out locations.
vtkSmartPointer< vtkCellArray > neighborCells = vtkSmartPointer<vtkCellArray>::New();
// Handle PointID is the diametric opposite of the chair corner on the
// higher order parallelopiped (the chair parallelopiped).
const vtkIdType chairHandleId = 8 + vtkParallelopipedTopology::
GetDiametricOppositeOfCorner(this->CurrentHandleIdx);
// Get the world position of the chair handle.
double chairPoint[3];
this->Points->GetPoint( chairHandleId, chairPoint );
std::vector< vtkParallelopipedTopology::LineType > lines;
this->Topology->GetNeighbors( node, neighborPtIds, neighborCells, lines );
neighborCells->InitTraversal();
for (int i = 0; i < 3; i++)
{
double lineEndPt[2][3];
this->Points->GetPoint( lines[i].Id[0], lineEndPt[0] );
this->Points->GetPoint( lines[i].Id[1], lineEndPt[1] );
double t, neighborPt[3]; // "x" is the point that we are trying to find.
neighborCells->GetNextCell(npts, cellPtIds);
vtkIdType planePtIds[3];
// For each point in the cell
for (int j = 0, idx = 0; j < npts && idx < 3; j++)
{
// Avoid the points that are on the chair as these are the ones we seek
// to find.
if ( cellPtIds[j] < 8 )
{
planePtIds[idx++] = cellPtIds[j];
}
}
// Construct a plane from the cell.
vtkPlane *plane = vtkPlane::New();
this->DefinePlane(plane, planePtIds[0], planePtIds[1], planePtIds[2]);
double endPoint[3] = { chairPoint[0] + lineEndPt[1][0] - lineEndPt[0][0],
chairPoint[1] + lineEndPt[1][1] - lineEndPt[0][1],
chairPoint[2] + lineEndPt[1][2] - lineEndPt[0][2] };
vtkPlane::IntersectWithLine( chairPoint, endPoint,
plane->GetNormal(), plane->GetOrigin(), t, neighborPt );
plane->Delete();
vtkDebugMacro( << "ChairPoint: (" << chairPoint[0] << "," << chairPoint[1]
<< "," << chairPoint[2] << ") lineEndPts [" << lines[i].Id[0] << "("
<< lineEndPt[0][0] << "," << lineEndPt[0][1] << "," << lineEndPt[0][2]
<< ")-" << lines[i].Id[1] << "(" << lineEndPt[1][0] << ","
<< lineEndPt[1][1] << "," << lineEndPt[1][2] << ")]"
<< " Intersection at: (" << neighborPt[0] << "," << neighborPt[1]
<< "," << neighborPt[2] << ")" );
this->Points->SetPoint( neighborPtIds[i], neighborPt );
}
// Now that we have found the 3 neighbors, we need to compute the other
// points in the chair. Note that we have 4 so far (3 neighbors + the
// chair node). There are 2 more to be found. Given that they will
// have to satisfy a parallelogram relationship, we can easily use
// vector addition to evaluate them.
for (int i = 0; i < 3; i++)
{
std::vector< vtkIdType > nodes(3);
vtkSmartPointer< vtkCellArray > cells
= vtkSmartPointer<vtkCellArray>::New();
nodes[0] = 8 + vtkParallelopipedTopology::
GetDiametricOppositeOfCorner(this->CurrentHandleIdx);
nodes[1] = neighborPtIds[i];
nodes[2] = neighborPtIds[(i+1)%3];
vtkDebugMacro( << "Looking for cells containing nodes: " << nodes[0]
<< "," << nodes[1] << "," << nodes[2] << " in topology "
<< (this->CurrentHandleIdx+1) );
this->Topology->FindCellsContainingNodes(
this->CurrentHandleIdx + 1, cells, nodes );
npts = 0; cellPtIds = NULL;
cells->InitTraversal();
cells->GetNextCell(npts, cellPtIds);
// Find the 4th pointId. The pointIds shall be stored in "nodes"
int j = 0;
while (cellPtIds[j] == nodes[0]
|| cellPtIds[j] == nodes[1]
|| cellPtIds[j] == nodes[2]) ++j;
nodes.push_back(cellPtIds[j]);
// Now go about finding the 4th point (Index 3) in the parallelogram..
// 0 ------ 1
// | |
// 2 ------ 3
//
double p[4][3]; // for 4 points.. 3 we know, 4th to find..
this->Points->GetPoint( nodes[0], p[0] );
this->Points->GetPoint( nodes[1], p[1] );
this->Points->GetPoint( nodes[2], p[2] );
p[3][0] = p[1][0] + p[2][0] - p[0][0];
p[3][1] = p[1][1] + p[2][1] - p[0][1];
p[3][2] = p[1][2] + p[2][2] - p[0][2];
vtkDebugMacro( << "Parallelogram built from (nodes and points): \n"
<< "(" << nodes[0] << ") = [" << p[0][0] << "," << p[0][1] << "," << p[0][2] << "]\n"
<< "(" << nodes[1] << ") = [" << p[1][0] << "," << p[1][1] << "," << p[1][2] << "]\n"
<< "(" << nodes[2] << ") = [" << p[2][0] << "," << p[2][1] << "," << p[2][2] << "]\n"
<< "(" << cellPtIds[j] << ") = [" << p[3][0] << "," << p[3][1] << "," << p[3][2] << "]\n");
this->Points->SetPoint( nodes[3], p[3] );
}
this->Points->SetPoint( 8 + vtkParallelopipedTopology::
GetDiametricOppositeOfCorner(this->CurrentHandleIdx),
this->Points->GetPoint(this->CurrentHandleIdx));
}
}
//----------------------------------------------------------------------
// This is where the bulk of the work is done.
int vtkParallelopipedRepresentation
::ComputeInteractionState(int X, int Y, int vtkNotUsed(modify))
{
int oldInteractionState = this->InteractionState;
// (A) -----------------------------------------------------------
// Handle the request methods. These are mere requests and will not cause
// any change in the position of the handles or the shape of the
// parallelopiped. The representation will, within this IF block change its
// state from a request to a concrete state.
if ( this->InteractionState == vtkParallelopipedRepresentation::RequestResizeParallelopiped
|| this->InteractionState == vtkParallelopipedRepresentation::RequestResizeParallelopipedAlongAnAxis
|| this->InteractionState == vtkParallelopipedRepresentation::RequestChairMode )
{
this->CurrentHandleIdx = -1;
// We are trying to perform user interaction that might potentially
// select a handle. Check if we are really near a handle, so it
// can be selected.
// Loop over all the handles and check if one of them is selected
for(int i = 0; i< 8; i++)
{
this->HandleRepresentations[i]->ComputeInteractionState(X, Y, 0);
if (this->HandleRepresentations[i]->GetInteractionState() ==
vtkHandleRepresentation::Selecting)
{
// The selected handle.
this->CurrentHandleIdx = i;
// The shift modifier determines if the handles are going to be
// translated along an axes of the parallelopiped.
switch (this->InteractionState)
{
case vtkParallelopipedRepresentation::RequestResizeParallelopiped:
this->InteractionState = (this->CurrentHandleIdx == this->ChairHandleIdx)
? ChairMode : ResizingParallelopiped;
break;
case vtkParallelopipedRepresentation::RequestResizeParallelopipedAlongAnAxis:
this->InteractionState = (this->CurrentHandleIdx == this->ChairHandleIdx)
? ChairMode : ResizingParallelopipedAlongAnAxis;
break;
case vtkParallelopipedRepresentation::RequestChairMode:
{
// Toggle chair mode if we already have a chair here.. We are
// trying to toggle of course.. In this case remove all chairs,
if (this->CurrentHandleIdx == this->ChairHandleIdx &&
this->HexPolyData->GetPolys()->GetNumberOfCells() == 9)
{
this->RemoveExistingChairs();
this->LastEventPosition[0] = X;
this->LastEventPosition[1] = Y;
this->InteractionState = vtkParallelopipedRepresentation::Inside;
// Synchronize the handle representations with our recently updated
// "Points" data-structure.
this->PositionHandles();
return this->InteractionState;
}
// We aren't trying to toggle. Create one
// Create a chair with a default cavity depth of 0.1
this->UpdateChairAtNode( this->CurrentHandleIdx );
// We are in chair mode. Use the placer to dictate where the
// "chaired" handle can move. (It can only move within the
// parallelopiped). First set some parameters on the placer.
vtkPlaneCollection *pc = vtkPlaneCollection::New();
this->GetParallelopipedBoundingPlanes( pc );
this->ChairPointPlacer->SetBoundingPlanes( pc );
pc->Delete();
this->InteractionState = ChairMode;
break;
}
}
// Highlight the selected handle and unhighlight all others.
this->SetHandleHighlight(-1, this->HandleProperty);
this->SetHandleHighlight(
this->CurrentHandleIdx, this->SelectedHandleProperty);
break;
}
}
if (this->CurrentHandleIdx == -1)
{
// We are near none of the handles.
// Now check if we are within the parallelopiped or outside the
// parallelopiped. We will use the pointplacer to evaluate this.
vtkPlaneCollection *pc = vtkPlaneCollection::New();
this->GetParallelopipedBoundingPlanes( pc );
this->ChairPointPlacer->SetBoundingPlanes( pc );
pc->Delete();
// Use any random handle as a reference for the point placer.
double eventDisplayPos[3] = {static_cast<double>(X),
static_cast<double>(Y),
0.0};
double dummy[4], worldOrient[9], handleWorldPos[4];
this->HandleRepresentations[0]->GetWorldPosition(handleWorldPos);
this->InteractionState = (this->ChairPointPlacer->ComputeWorldPosition(
this->Renderer, eventDisplayPos, handleWorldPos, dummy, worldOrient )
? vtkParallelopipedRepresentation::Inside
: vtkParallelopipedRepresentation::Outside);
}
if (this->InteractionState == vtkParallelopipedRepresentation::Inside &&
oldInteractionState == vtkParallelopipedRepresentation::
RequestResizeParallelopipedAlongAnAxis)
{
this->HighlightAllFaces();
}
else
{
// UnHighlight all faces
this->UnHighlightAllFaces();
}
// Reset any cached "resize along that axis" stuff.
this->LastResizeAxisIdx = -1;
}
// (B) -----------------------------------------------------------
// Handle the resizing operations (along the axis or arbitrarily).
else if (this->InteractionState ==
vtkParallelopipedRepresentation::ResizingParallelopipedAlongAnAxis ||
this->InteractionState ==
vtkParallelopipedRepresentation::ResizingParallelopiped)
{
// Ensure that a handle has been picked.
if (this->CurrentHandleIdx != -1)
{
// Compute world positions corresponding to the current event position
// (X,Y) and the last event positions such that they lie at the same
// depth that the handle lies on.
double axis[3][3], eventWorldPos[4], handleWorldPos[4],
handleDisplayPos[4], neighborWorldPos[3][4], neighborDisplayPos[3][4];
this->HandleRepresentations[this->CurrentHandleIdx]
->GetWorldPosition(handleWorldPos);
vtkInteractorObserver::ComputeWorldToDisplay( this->Renderer,
handleWorldPos[0], handleWorldPos[1], handleWorldPos[2],
handleDisplayPos);
// Now find and get the display positions of the three neighbors of the
// current handle. We have to rescale along one of the three edges.
vtkIdType neighborIndices[3];
this->Topology->GetNeighbors( this->CurrentHandleIdx, neighborIndices,
(this->ChairHandleIdx == -1) ? 0 : this->ChairHandleIdx + 1 );
// The motion vector in display coords
const double motionVector[3] = { X - this->LastEventPosition[0],
Y - this->LastEventPosition[1],
0.0 };
double maxConfidence = VTK_DOUBLE_MIN;
// The next few lines attempt to find the axis should we scale along.
// The axis is the axis of the parallelopiped that is most aligned with
// the direction of mouse motion.
int axisIdx = this->LastResizeAxisIdx; // To be found out ..
// loop over the 3 neighbors of the current handle
for (int i = 0; i < 3; i++)
{
// Compute display position of this neighbor
this->Points->GetPoint(neighborIndices[i], neighborWorldPos[i]);
vtkInteractorObserver::ComputeWorldToDisplay( this->Renderer,
neighborWorldPos[i][0], neighborWorldPos[i][1],
neighborWorldPos[i][2], neighborDisplayPos[i]);
// Dot product of the motion vector (in display coords) with each
// of the three edges (in display coords). The maximum of the three
// will determine which axis of the parallelopiped we will rescale along
axis[i][0] = neighborDisplayPos[i][0] - handleDisplayPos[0];
axis[i][1] = neighborDisplayPos[i][1] - handleDisplayPos[1];
axis[i][2] = 0.0;
vtkMath::Normalize2D(axis[i]);
// If we did not compute the resize axis Idx already the last time,
// we were in this method, compute it now, by checking which axis
// the motion vector is most aligned with.
if (this->LastResizeAxisIdx == -1 ||
this->InteractionState ==
vtkParallelopipedRepresentation::ResizingParallelopiped)
{
const double confidence
= fabs(vtkMath::Dot2D( axis[i], motionVector ));
if (confidence > maxConfidence)
{
axisIdx = i;
maxConfidence = confidence;
}
}
}
// Now that we know the axis to translate along, find the amount we should
// translate by. The new handle position must lie somewhere along the
// line joining the currently selected handle and the neighbor that lies
// along the rescale axis. We will evaluate 't E [-inf, 1.0]', the
// parametric position along the line. This point will simply be the
// point on the aforementioned line that the current event position is
// closest to.
double directionOfProjection[3], closestPt1[3], closestPt2[3], t1, t;
this->Renderer->GetActiveCamera()->
GetDirectionOfProjection(directionOfProjection);
vtkInteractorObserver::ComputeDisplayToWorld( this->Renderer,
X, Y, handleDisplayPos[2], eventWorldPos);
double l0[3] = {eventWorldPos[0] - directionOfProjection[0],
eventWorldPos[1] - directionOfProjection[1],
eventWorldPos[2] - directionOfProjection[2] };
double l1[3] = {eventWorldPos[0] + directionOfProjection[0],
eventWorldPos[1] + directionOfProjection[1],
eventWorldPos[2] + directionOfProjection[2] };
vtkLine::DistanceBetweenLines( handleWorldPos, neighborWorldPos[axisIdx],
l0, l1,
closestPt1, closestPt2,
t, t1 );
t = (t > 1.0 ? 1.0 : t); // clamp 't'
vtkDebugMacro( << "Currently selected handle is at : (" <<
handleWorldPos[0] << "," << handleWorldPos[1] << "," << handleWorldPos[2] <<
")\n Pt2 (the selected handle will be moved along the axis represented by"
<< " itself and Pt2) is at: (" << neighborWorldPos[axisIdx][0]
<< "," << neighborWorldPos[axisIdx][1] << "," << neighborWorldPos[axisIdx][2]
<< ")\n The selected handle will be moved to parametric location t = " << t
<< "with the line being specified by the above 2 points.");
// This is the amount by which the face will move towards
// (or away from if t < 0.0) the other face. We know that the face has
// the following PointIds.
// 1) CurrentHandleIdx
// 2) Neighbor 1 of currentHandleIdx
// 3) Neighbor 2 of CurrentHandleIdx
// It will be our job in the next few lines to find the other points in
// the face and translate the face.
// "nodes" contains the 3 pointIds that we know are present on the face.
std::vector< vtkIdType > nodes(3);
nodes[0] = this->CurrentHandleIdx;
for (int i = 0, j = 1; i < 3; i++)
{
if (i != axisIdx)
{
nodes[j++] = neighborIndices[i];
}
}
// "cells" below contains the face to be translated.
vtkSmartPointer< vtkCellArray > cells = vtkSmartPointer<vtkCellArray>::New();
this->Topology->FindCellsContainingNodes(
(this->ChairHandleIdx == -1) ? 0 :
this->ChairHandleIdx + 1, cells, nodes );
vtkIdType npts = 0, *cellPtIds = NULL;
cells->InitTraversal();
cells->GetNextCell(npts, cellPtIds);
// The translation vector
double handleTranslation[3] =
{ t * neighborWorldPos[axisIdx][0] - t * handleWorldPos[0],
t * neighborWorldPos[axisIdx][1] - t * handleWorldPos[1],
t * neighborWorldPos[axisIdx][2] - t * handleWorldPos[2] };
double newHandleWorldPos[3] = { handleWorldPos[0] + handleTranslation[0],
handleWorldPos[1] + handleTranslation[1],
handleWorldPos[2] + handleTranslation[2]};
if ( t > 0.0 // We are moving towards the other handle
&& (vtkMath::Distance2BetweenPoints(
neighborWorldPos[axisIdx], newHandleWorldPos)) < (
this->AbsoluteMinimumThickness * this->AbsoluteMinimumThickness))
{
// Too close. We don't want the parallelopiped collapsing, do we ?
vtkDebugMacro( << "AbsoluteMaximumThickness = "
<< this->AbsoluteMinimumThickness << " This move will bring us "
<< sqrt(vtkMath::Distance2BetweenPoints(
neighborWorldPos[axisIdx], newHandleWorldPos)) << " far away to ("
<< newHandleWorldPos[0] << "," << newHandleWorldPos[1] << ","
<< newHandleWorldPos[2] << "). We can\'t do that." );
// Revise 't' so as to maintain minimum thickness. The bottom line is
// that although 't E [-inf, 1.0]', 't' will never hit 1.0 unless
// AbsoluteMinimumThickness is 0.0.
t = 1.0 - this->AbsoluteMinimumThickness / sqrt(
vtkMath::Distance2BetweenPoints(
neighborWorldPos[axisIdx], handleWorldPos));
// Recompute these 2 positions with our revised 't' value.
handleTranslation[0] = t * neighborWorldPos[axisIdx][0] - t * handleWorldPos[0];
handleTranslation[1] = t * neighborWorldPos[axisIdx][1] - t * handleWorldPos[1];
handleTranslation[2] = t * neighborWorldPos[axisIdx][2] - t * handleWorldPos[2];
newHandleWorldPos[0] = handleWorldPos[0] + handleTranslation[0];
newHandleWorldPos[1] = handleWorldPos[1] + handleTranslation[1];
newHandleWorldPos[2] = handleWorldPos[2] + handleTranslation[2];
if (t < 0.0)
{
// Sanity check. We should never get here in the first place.
this->LastEventPosition[0] = X;
this->LastEventPosition[1] = Y;
return this->InteractionState;
}
vtkDebugMacro( "So we are revising the value of t to " << t
<< " and newHandleWorldPos to (" << newHandleWorldPos[0] << ","
<< newHandleWorldPos[1] << "," << newHandleWorldPos[2] << ")" );
}
// If we have a chair, prevent the handle from being translated beyond
// the plane of the chair, otherwise it will cause the chair to turn
// inside out. So we will do some dot-product stuff and revise the
// "neighborWorldPos", if we have a chair.
if (this->ChairHandleIdx != -1)
{
std::vector< vtkIdType > nodes2(1);
nodes2[0] = vtkParallelopipedTopology::GetDiametricOppositeOfCorner(this->ChairHandleIdx)+8;
const vtkParallelopipedTopology::CliqueType cells2 = this->
Topology->FindCellsContainingNodes( this->ChairHandleIdx+1, nodes2 );
for (vtkParallelopipedTopology::CliqueType::const_iterator clit = cells2.begin();
clit != cells2.end(); ++clit)
{
vtkSmartPointer< vtkPlane > plane = vtkSmartPointer< vtkPlane >::New();
this->DefinePlane(plane, (*clit)[0], (*clit)[1], (*clit)[2] );
double distance = plane->EvaluateFunction(newHandleWorldPos);
// Ensure that the handle is on the right side of the chair's plane,
// and that it is at least 'MinimumThickness' away from any of the
// planes of the chair.
if (fabs(distance) < this->MinimumThickness ||
(distance * (std::find(clit->begin(), clit->end(),
this->CurrentHandleIdx+8) != clit->end() ? -1 : 1) > 0))
{
this->LastEventPosition[0] = X;
this->LastEventPosition[1] = Y;
return this->InteractionState;
}
}
}
// Highlight this face...
this->SetFaceHighlight( cells, this->SelectedFaceProperty );
// Translate this face...
for (vtkIdType i = 0; i < npts;
this->TranslatePoint( cellPtIds[i++], handleTranslation ))
{
;
}
// Cache the axis along which we resized the previous time, so we don't
// have to recompute it.
this->LastResizeAxisIdx = axisIdx;
// Update the bounding planes.
vtkPlaneCollection *pc = vtkPlaneCollection::New();
this->GetParallelopipedBoundingPlanes( pc );
this->ChairPointPlacer->SetBoundingPlanes( pc );
pc->Delete();
}
else
{
// In theory, we should never get there.
this->InteractionState = vtkParallelopipedRepresentation::Outside;
}
}
// (C) -----------------------------------------------------------
// Default method for all other states.
else if (this->InteractionState == vtkParallelopipedRepresentation::ChairMode)
{
// Ensure that a handle has been picked.
if (this->CurrentHandleIdx != -1)
{
double handleWorldPos[4];
this->HandleRepresentations[this->CurrentHandleIdx]
->GetWorldPosition(handleWorldPos);
// The new handle poistion, will lie on a plane that passes through the
// current world position and is parallel to the focal plane.
// To compute this, we will use the help of the focal plane point placer,
// and supply it with the offset of the handle's distance from the
// focal plane.
double eventDisplayPos[3] = {static_cast<double>(X),
static_cast<double>(Y),
0.0};
double newHandlePos[4], worldOrient[9];
if (this->ChairPointPlacer->ComputeWorldPosition(
this->Renderer, eventDisplayPos, handleWorldPos,
newHandlePos, worldOrient ))
{
const double handleTranslation[3] =
{ newHandlePos[0] - handleWorldPos[0],
newHandlePos[1] - handleWorldPos[1],
newHandlePos[2] - handleWorldPos[2] };
this->TranslatePoint( this->CurrentHandleIdx, handleTranslation);
}
this->UpdateChairAtNode( this->CurrentHandleIdx );
}
else
{
// In theory, we should never get there.
this->InteractionState = vtkParallelopipedRepresentation::Outside;
}
}
// (D) -----------------------------------------------------------
// Default method for all other states.
else
{
this->InteractionState = vtkParallelopipedRepresentation::Outside;
// Loop over all the handles and check if we are near one of them.
for(int i = 0; i< 8; i++)
{
this->HandleRepresentations[i]->ComputeInteractionState(X, Y, 0);
if (this->HandleRepresentations[i]->GetInteractionState() ==
vtkHandleRepresentation::Selecting)
{
this->SetHandleHighlight( i, this->HoveredHandleProperty );
this->InteractionState = vtkParallelopipedRepresentation::Inside;
break;
}
}
if (this->InteractionState == vtkParallelopipedRepresentation::Outside)
{
// Unhighlight all handles and faces.
this->SetHandleHighlight( -1, this->HandleProperty );
this->UnHighlightAllFaces();
}
}
// Cache the last event position.
this->LastEventPosition[0] = X;
this->LastEventPosition[1] = Y;
return this->InteractionState;
}
//----------------------------------------------------------------------------
void vtkParallelopipedRepresentation
::TranslatePoint( int id, const double translation[3] )
{
double p[3];
this->Points->GetPoint(id, p);
p[0] += translation[0];
p[1] += translation[1];
p[2] += translation[2];
this->Points->SetPoint(id, p);
if (id < 8)
{
this->HandleRepresentations[id]->SetWorldPosition(p);
}
// Update our records.
this->PositionHandles();
}
//----------------------------------------------------------------------------
// Get the bounding planes of the object. The first 6 planes will
// be bounding planes of the parallelopiped. If in chair mode, three
// additional planes will be present. The last three planes will be those
// of the chair. The Normals of all the planes will point into the object.
//
void vtkParallelopipedRepresentation::GetBoundingPlanes( vtkPlaneCollection *pc )
{
vtkSmartPointer< vtkCellArray > cellArray = vtkSmartPointer<vtkCellArray>::New();
this->Topology->PopulateTopology( this->ChairHandleIdx + 1, cellArray );
vtkIdType npts = 0, *ptIds = NULL;
// For each planar cell in our object, we need to find the plane it lies on
for (cellArray->InitTraversal(); cellArray->GetNextCell(npts, ptIds); )
{
vtkIdType planePtIds[3];
// For each cell, get the point ids that comprise the planar cell.
for (int i = 0, idx = 0; i < npts && idx < 3; i++)
{
if (this->CurrentHandleIdx != ptIds[i])
{
planePtIds[idx++] = ptIds[i];
}
}
// Construct a plane from the cell.
vtkPlane *plane = vtkPlane::New();
this->DefinePlane(plane, planePtIds[0], planePtIds[1], planePtIds[2]);
pc->AddItem(plane);
plane->Delete();
}
}
//----------------------------------------------------------------------------
// Convenience method to get just the planes that define the parallelopiped.
// If we aren't in chair mode, this will be the same as GetBoundingPlanes().
// If we are in chair mode, this will be the first 6 planes from amongst
// those returned by "GetBoundingPlanes".
// All planes have their normals pointing inwards.
//
void vtkParallelopipedRepresentation
::GetParallelopipedBoundingPlanes( vtkPlaneCollection * pc )
{
vtkPlaneCollection * pc2 = vtkPlaneCollection::New();
this->GetBoundingPlanes( pc2 );
vtkPlane *p;
int i = 0;
for (pc2->InitTraversal(); ((p = pc2->GetNextItem()) && i < 6); ++i )
{
pc->AddItem(p);
}
pc2->Delete();
}
//----------------------------------------------------------------------------
// Convenience method to populate a plane from 3 pointIds
void vtkParallelopipedRepresentation::DefinePlane( vtkPlane *plane,
vtkIdType id1, vtkIdType id2, vtkIdType id3)
{
double p[3][3];
this->Points->GetPoint(id1, p[0]);
this->Points->GetPoint(id2, p[1]);
this->Points->GetPoint(id3, p[2]);
this->DefinePlane(plane, p);
}
//----------------------------------------------------------------------------
// Convenience method to populate a plane from 3 points.
void vtkParallelopipedRepresentation::DefinePlane( vtkPlane *plane, double p[3][3])
{
plane->SetOrigin( p[0] );
double v1[3] = { p[1][0] - p[0][0], p[1][1] - p[0][1], p[1][2] - p[0][2] };
double v2[3] = { p[2][0] - p[0][0], p[2][1] - p[0][1], p[2][2] - p[0][2] };
double normal[3];
vtkMath::Cross( v1, v2, normal );
vtkMath::Normalize(normal);
plane->SetNormal( normal );
}
//----------------------------------------------------------------------
void vtkParallelopipedRepresentation::GetActors(vtkPropCollection *pc)
{
for (int i=0; i<8; i++)
{
this->HandleRepresentations[i]->GetActors(pc);
}
this->HexActor->GetActors(pc);
this->HexFaceActor->GetActors(pc);
}
//----------------------------------------------------------------------
void vtkParallelopipedRepresentation::ReleaseGraphicsResources(vtkWindow *w)
{
this->HexActor->ReleaseGraphicsResources(w);
this->HexFaceActor->ReleaseGraphicsResources(w);
for (int i=0; i<8; i++)
{
this->HandleRepresentations[i]->ReleaseGraphicsResources(w);
}
}
//----------------------------------------------------------------------
int vtkParallelopipedRepresentation::RenderOverlay(vtkViewport *v)
{
int count = 0;
count+=this->HexActor->RenderOverlay(v);
count+=this->HexFaceActor->RenderOverlay(v);
for (int i=0; i<8; i++)
{
count+=this->HandleRepresentations[i]->RenderOverlay(v);
}
return count;
}
//----------------------------------------------------------------------------
int vtkParallelopipedRepresentation::RenderOpaqueGeometry(vtkViewport *viewport)
{
int count = 0;
this->BuildRepresentation();
count+=this->HexActor->RenderOpaqueGeometry(viewport);
count+=this->HexFaceActor->RenderOpaqueGeometry(viewport);
for (int i=0; i<8; i++)
{
count += this->HandleRepresentations[i]->RenderOpaqueGeometry(viewport);
}
return count;
}
//----------------------------------------------------------------------------
void vtkParallelopipedRepresentation::PositionHandles()
{
for (int i = 0; i < 8; ++i)
{
this->HandleRepresentations[i]->SetWorldPosition(this->Points->GetPoint(i));
}
this->Points->GetData()->Modified();
this->HexFacePolyData->Modified();
this->HexPolyData->Modified();
}
//----------------------------------------------------------------------------
void vtkParallelopipedRepresentation::HandlesOn()
{
for (int i=0; i<8; this->HandleRepresentations[i++]->SetVisibility(1))
{
;
}
}
//----------------------------------------------------------------------------
void vtkParallelopipedRepresentation::HandlesOff()
{
for (int i=0; i<8; this->HandleRepresentations[i++]->SetVisibility(0))
{
;
}
}
//----------------------------------------------------------------------------
void vtkParallelopipedRepresentation::SetHandleHighlight(
int handleIdx, vtkProperty *property )
{
if ( handleIdx == -1)
{
// Do for all handles
for (int i = 0; i < 8; i++)
{
static_cast< vtkSphereHandleRepresentation * >(
this->HandleRepresentations[i])->SetProperty(property);
static_cast< vtkSphereHandleRepresentation * >(
this->HandleRepresentations[i])->SetSelectedProperty(property);
}
}
else
{
static_cast< vtkSphereHandleRepresentation * >(
this->HandleRepresentations[handleIdx])->SetProperty(property);
static_cast< vtkSphereHandleRepresentation * >(
this->HandleRepresentations[handleIdx])->SetSelectedProperty(property);
}
}
//----------------------------------------------------------------------------
void vtkParallelopipedRepresentation
::SetFaceHighlight( vtkCellArray * face, vtkProperty *p )
{
if (face)
{
this->HexFacePolyData->SetPolys(face);
}
this->HexFaceActor->SetProperty( p );
}
//----------------------------------------------------------------------------
void vtkParallelopipedRepresentation::HighlightAllFaces()
{
vtkSmartPointer< vtkCellArray > cells = vtkSmartPointer<vtkCellArray>::New();
this->Topology->PopulateTopology( this->ChairHandleIdx + 1, cells );
this->SetFaceHighlight( cells, this->SelectedFaceProperty );
}
//----------------------------------------------------------------------------
void vtkParallelopipedRepresentation::UnHighlightAllFaces()
{
this->SetFaceHighlight( NULL, this->FaceProperty );
}
//----------------------------------------------------------------------------
// Translate by a vector to be computed from the last Pick position and the
// supplied event position
void vtkParallelopipedRepresentation::Translate( int X, int Y )
{
double eventPos[2] = { static_cast<double>(X),
static_cast<double>(Y)};
double lastEventPos[2] =
{ this->LastEventPosition[0], this->LastEventPosition[1] };
// First compute the centroid. Its only use is to determine a reference
// plane, on which we will assume lastEventPos and eventPos lie.
double *pts =
static_cast<vtkDoubleArray *>(this->Points->GetData())->GetPointer(0);
double center[3] = {0.0, 0.0, 0.0};
for (int i=0; i<8; i++)
{
center[0] += *pts++;
center[1] += *pts++;
center[2] += *pts++;
}
center[0] /= 8.0;
center[1] /= 8.0;
center[2] /= 8.0;
// Now convert the event positions to world positions as if they lay at the
// same plane as the center.
double fp[4], lastEventWorldPos[4], eventWorldPos[4];
vtkInteractorObserver::ComputeWorldToDisplay( this->Renderer,
center[0], center[1], center[2], fp );
vtkInteractorObserver::ComputeDisplayToWorld( this->Renderer,
lastEventPos[0], lastEventPos[1], fp[2], lastEventWorldPos);
vtkInteractorObserver::ComputeDisplayToWorld( this->Renderer,
eventPos[0], eventPos[1], fp[2], eventWorldPos);
// Compute the offset from the last event position and translate.
double translation[3] = { eventWorldPos[0] - lastEventWorldPos[0],
eventWorldPos[1] - lastEventWorldPos[1],
eventWorldPos[2] - lastEventWorldPos[2] };
this->Translate( translation );
// Update our records
this->LastEventPosition[0] = X;
this->LastEventPosition[1] = Y;
}
//----------------------------------------------------------------------------
// Loop through all points and translate them
void vtkParallelopipedRepresentation::Translate(double translation[3])
{
double *pts =
static_cast<vtkDoubleArray *>(this->Points->GetData())->GetPointer(0);
for (int i=0; i<16; i++)
{
*pts++ += translation[0];
*pts++ += translation[1];
*pts++ += translation[2];
}
// Synchronize the handle representations with our recently updated
// "Points" data-structure.
this->PositionHandles();
}
//----------------------------------------------------------------------------
void vtkParallelopipedRepresentation::Scale( int vtkNotUsed(X), int Y )
{
double *pts =
static_cast<vtkDoubleArray *>(this->Points->GetData())->GetPointer(0);
double *center
= static_cast<vtkDoubleArray *>(this->Points->GetData())->GetPointer(3*14);
double sf = ( Y > this->LastEventPosition[1] ? 1.03 : 0.97 );
for (int i=0; i<16; i++, pts+=3)
{
pts[0] = sf * (pts[0] - center[0]) + center[0];
pts[1] = sf * (pts[1] - center[1]) + center[1];
pts[2] = sf * (pts[2] - center[2]) + center[2];
}
// Synchronize the handle representations with our recently updated
// "Points" data-structure.
this->PositionHandles();
}
//----------------------------------------------------------------------------
void vtkParallelopipedRepresentation::PlaceWidget(double bounds[6])
{
double corners[8][3] =
{ { bounds[0], bounds[2], bounds[4] },
{ bounds[1], bounds[2], bounds[4] },
{ bounds[1], bounds[3], bounds[4] },
{ bounds[0], bounds[3], bounds[4] },
{ bounds[0], bounds[2], bounds[5] },
{ bounds[1], bounds[2], bounds[5] },
{ bounds[1], bounds[3], bounds[5] },
{ bounds[0], bounds[3], bounds[5] } };
this->PlaceWidget(corners);
}
//----------------------------------------------------------------------------
void vtkParallelopipedRepresentation::PlaceWidget(double corners[8][3])
{
// Scale the corners of parallelopiped according to the place factor.
// Note that the default place factor is 0.5. So if your corners
// appear half way in, don't be surprised.
//
double center[3] = {0.0, 0.0, 0.0}, newCorners[8][3];
for (int j = 0; j < 3; j++)
{
for (int i = 0; i < 8; center[j] += corners[i][j], i++)
{
;
}
center[j] /= 8.0;
for (int i = 0; i < 8; i++)
{
newCorners[i][j] = center[j] +
this->PlaceFactor*(corners[i][j]-center[j]);
}
}
for (int i = 0; i < 8; i++)
{
this->Points->SetPoint(i, newCorners[i]);
}
this->AbsoluteMinimumThickness =
this->HexPolyData->GetLength()*this->MinimumThickness;
this->ChairPointPlacer->SetMinimumDistance( 0.5 * this->AbsoluteMinimumThickness );
// Initialize the chair points too
for (int i = 8; i < 16; i++)
{
this->Points->SetPoint(i, newCorners[0]);
}
this->PositionHandles();
}
//----------------------------------------------------------------------------
void vtkParallelopipedRepresentation::GetPolyData(vtkPolyData *pd)
{
pd->SetPoints(this->HexPolyData->GetPoints());
pd->SetPolys(this->HexPolyData->GetPolys());
}
//----------------------------------------------------------------------------
double *vtkParallelopipedRepresentation::GetBounds()
{
return this->Points->GetBounds();
}
//----------------------------------------------------------------------------
void vtkParallelopipedRepresentation::BuildRepresentation()
{
this->Points->Modified();
}
//----------------------------------------------------------------------------
void vtkParallelopipedRepresentation::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os,indent);
os << indent << "Minimum Thickness: " << this->MinimumThickness << "\n";
if ( this->HandleProperty )
{
os << indent << "Handle Property: " << this->HandleProperty << "\n";
}
else
{
os << indent << "Handle Property: (none)\n";
}
if ( this->HoveredHandleProperty )
{
os << indent << "Hovered Handle Property: " << this->HoveredHandleProperty << "\n";
}
else
{
os << indent << "Hovered Handle Property: (none)\n";
}
if ( this->FaceProperty )
{
os << indent << "Face Property: " << this->FaceProperty << "\n";
}
else
{
os << indent << "Face Property: (none)\n";
}
if ( this->OutlineProperty )
{
os << indent << "Outline Property: " << this->OutlineProperty << "\n";
}
else
{
os << indent << "Outline Property: (none)\n";
}
if ( this->SelectedHandleProperty )
{
os << indent << "Selected Handle Property: " << this->SelectedHandleProperty << "\n";
}
else
{
os << indent << "Selected Handle Property: (none)\n";
}
if ( this->SelectedFaceProperty )
{
os << indent << "Selected Face Property: " << this->SelectedFaceProperty << "\n";
}
else
{
os << indent << "Selected Face Property: (none)\n";
}
if ( this->SelectedOutlineProperty )
{
os << indent << "Selected Outline Property: " << this->SelectedOutlineProperty << "\n";
}
else
{
os << indent << "Selected Outline Property: (none)\n";
}
// this->InteractionState is printed in superclass
// this is commented to avoid PrintSelf errors
}
|