1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
|
""" Test for various numpy_interface modules. Main goal is to test
parallel algorithms in vtk.numpy_interface.algorithms."""
from __future__ import print_function
import sys
try:
import numpy
except ImportError:
print("Numpy (http://numpy.scipy.org) not found.", end=' ')
print("This test requires numpy!")
sys.exit(0)
import vtk
from vtk.test import Testing
import vtk.numpy_interface.dataset_adapter as dsa
import vtk.numpy_interface.algorithms as algs
from mpi4py import MPI
c = vtk.vtkMPIController()
#c.SetGlobalController(None)
rank = c.GetLocalProcessId()
size = c.GetNumberOfProcesses()
def PRINT(text, values):
if values is dsa.NoneArray:
values = numpy.array(0, dtype=numpy.float64)
else:
values = numpy.array(numpy.sum(values)).astype(numpy.float64)
res = numpy.array(values)
MPI.COMM_WORLD.Allreduce([values, MPI.DOUBLE], [res, MPI.DOUBLE], MPI.SUM)
assert numpy.abs(res) < 1E-5
if rank == 0:
print(text, res)
def testArrays(rtData, rtData2, grad, grad2, total_npts):
" Test various parallel algorithms."
if rank == 0:
print('-----------------------')
PRINT( "SUM ones:", algs.sum(rtData / rtData) - total_npts )
PRINT( "SUM sin:", (algs.sum(algs.sin(rtData) + 1) - numpy.sum(numpy.sin(rtData2) + 1)) / numpy.sum(numpy.sin(rtData2) + 1) )
PRINT( "rtData min:", algs.min(rtData) - numpy.min(rtData2) )
PRINT( "rtData max:", algs.max(rtData) - numpy.max(rtData2) )
PRINT( "rtData sum:", (algs.sum(rtData) - numpy.sum(rtData2)) / (2*numpy.sum(rtData2)) )
PRINT( "rtData mean:", (algs.mean(rtData) - numpy.mean(rtData2)) / (2*numpy.mean(rtData2)) )
PRINT( "rtData var:", (algs.var(rtData) - numpy.var(rtData2)) / numpy.var(rtData2) )
PRINT( "rtData std:", (algs.std(rtData) - numpy.std(rtData2)) / numpy.std(rtData2) )
PRINT( "grad min:", algs.min(grad) - numpy.min(grad2) )
PRINT( "grad max:", algs.max(grad) - numpy.max(grad2) )
PRINT( "grad min 0:", algs.min(grad, 0) - numpy.min(grad2, 0) )
PRINT( "grad max 0:", algs.max(grad, 0) - numpy.max(grad2, 0) )
PRINT( "grad min 1:", algs.sum(algs.min(grad, 1)) - numpy.sum(numpy.min(grad2, 1)) )
PRINT( "grad max 1:", algs.sum(algs.max(grad, 1)) - numpy.sum(numpy.max(grad2, 1)) )
PRINT( "grad sum 1:", algs.sum(algs.sum(grad, 1)) - numpy.sum(numpy.sum(grad2, 1)) )
PRINT( "grad var:", (algs.var(grad) - numpy.var(grad2)) / numpy.var(grad2) )
PRINT( "grad var 0:", (algs.var(grad, 0) - numpy.var(grad2, 0)) / numpy.var(grad2, 0) )
w = vtk.vtkRTAnalyticSource()
# Update with ghost level because gradient needs it
# to be piece independent
w.UpdatePiece(rank, size, 1)
print(w.GetOutput())
print(w.GetOutputInformation(0))
# The parallel arrays that we care about
ds = dsa.WrapDataObject(w.GetOutput())
rtData = ds.PointData['RTData']
grad = algs.gradient(rtData)
ds.PointData.append(grad, 'gradient')
# Crop the any ghost points out
org_ext = w.GetOutput().GetExtent()
ext = list(org_ext)
wext = w.GetOutputInformation(0).Get(vtk.vtkStreamingDemandDrivenPipeline.WHOLE_EXTENT())
for i in range(3):
if ext[2*i] != wext[2*i]:
ext[2*i] = ext[2*i] + 2
if ext[2*i+1] != wext[2*i+1]:
ext[2*i+1] = ext[2*i+1] - 1
if ext != list(org_ext):
w.GetOutput().Crop(ext)
# Croppped arrays
rtData = ds.PointData['RTData']
grad = ds.PointData['gradient']
# The whole dataset so that we can compare
# against parallel algorithms.
w2 = vtk.vtkRTAnalyticSource()
w2.Update()
ds2 = dsa.WrapDataObject(w2.GetOutput())
rtData2 = ds2.PointData['RTData']
grad2 = algs.gradient(rtData2)
npts = numpy.array(numpy.int32(ds.GetNumberOfPoints()))
total_npts = numpy.array(npts)
MPI.COMM_WORLD.Allreduce([npts, MPI.INT], [total_npts, MPI.INT], MPI.SUM)
# Test simple distributed data.
testArrays(rtData, rtData2, grad, grad2, total_npts)
# Check that we can disable parallelism by using a dummy controller
# even when a global controller is set
assert algs.sum(rtData / rtData, controller=vtk.vtkDummyController()) != total_npts
# Test where arrays are NoneArray on one of the ranks.
if size > 1:
if rank == 0:
rtData3 = rtData2
grad3 = grad2
else:
rtData3 = dsa.NoneArray
grad3 = dsa.NoneArray
testArrays(rtData3, rtData2, grad3, grad2, total_npts)
# Test composite arrays
rtData3 = dsa.VTKCompositeDataArray([rtData, dsa.NoneArray])
grad3 = dsa.VTKCompositeDataArray([dsa.NoneArray, grad])
testArrays(rtData3, rtData2, grad3, grad2, total_npts)
# Test where arrays are NoneArray on one of the ranks
# and composite on others.
if size > 1:
if rank == 1:
rtData3 = dsa.VTKCompositeDataArray([rtData2])
grad3 = dsa.VTKCompositeDataArray([grad2])
else:
rtData3 = dsa.NoneArray
grad3 = dsa.NoneArray
testArrays(rtData3, rtData2, grad3, grad2, total_npts)
# Test composite arrays with multiple blocks.
# Split the local image to 2.
datasets = []
for i in range(2):
image = vtk.vtkImageData()
image.ShallowCopy(w.GetOutput())
t = vtk.vtkExtentTranslator()
wext = image.GetExtent()
t.SetWholeExtent(wext)
t.SetPiece(i)
t.SetNumberOfPieces(2)
t.PieceToExtent()
ext = list(t.GetExtent())
# Crop the any ghost points out
for i in range(3):
if ext[2*i] != wext[2*i]:
ext[2*i] = ext[2*i] + 1
if ext != list(org_ext):
image.Crop(ext)
datasets.append(dsa.WrapDataObject(image))
rtData3 = dsa.VTKCompositeDataArray([datasets[0].PointData['RTData'], datasets[1].PointData['RTData']])
grad3 = dsa.VTKCompositeDataArray([datasets[0].PointData['gradient'], datasets[1].PointData['gradient']])
testArrays(rtData3, rtData2, grad3, grad2, total_npts)
# Test min/max per block
NUM_BLOCKS = 10
w = vtk.vtkRTAnalyticSource()
w.SetWholeExtent(0, 10, 0, 10, 0, 10)
w.Update()
c = vtk.vtkMultiBlockDataSet()
c.SetNumberOfBlocks(size*NUM_BLOCKS)
if rank == 0:
start = 0
end = NUM_BLOCKS
else:
start = rank*NUM_BLOCKS - 3
end = start + NUM_BLOCKS
for i in range(start, end):
a = vtk.vtkImageData()
a.ShallowCopy(w.GetOutput())
c.SetBlock(i, a)
if rank == 0:
c.SetBlock(NUM_BLOCKS - 1, vtk.vtkPolyData())
cdata = dsa.WrapDataObject(c)
rtdata = cdata.PointData['RTData']
rtdata = algs.abs(rtdata)
g = algs.gradient(rtdata)
g2 = algs.gradient(g)
res = True
dummy = vtk.vtkDummyController()
for axis in [None, 0]:
for array in [rtdata, g, g2]:
if rank == 0:
array2 = array/2
min = algs.min_per_block(array2, axis=axis)
res &= numpy.all(min.Arrays[NUM_BLOCKS - 1] == numpy.min(array, axis=axis))
all_min = algs.min(min, controller=dummy)
all_min_true = numpy.min([algs.min(array, controller=dummy), algs.min(array2, controller=dummy)])
res &= all_min == all_min_true
max = algs.max_per_block(array2, axis=axis)
res &= numpy.all(max.Arrays[NUM_BLOCKS - 1] == numpy.max(array, axis=axis))
all_max = algs.max(max, controller=dummy)
all_max_true = numpy.max([algs.max(array, controller=dummy), algs.max(array2, controller=dummy)])
res &= all_max == all_max_true
sum = algs.sum_per_block(array2, axis=axis)
sum_true = numpy.sum(array2.Arrays[0]) * (NUM_BLOCKS-1)
sum_true += numpy.sum(array.Arrays[0]) * 3
res &= numpy.sum(algs.sum(sum, controller=dummy) - algs.sum(sum_true, controller=dummy)) == 0
mean = algs.mean_per_block(array2, axis=axis)
res &= numpy.sum(mean.Arrays[0] - numpy.mean(array2.Arrays[0], axis=axis)) < 1E-6
if len(array.Arrays[0].shape) == 1:
stk = numpy.hstack
else:
stk = numpy.vstack
res &= numpy.sum(mean.Arrays[NUM_BLOCKS-2] - numpy.mean(stk((array.Arrays[0], array2.Arrays[0])), axis=axis)) < 1E-4
elif rank == 2:
min = algs.min_per_block(dsa.NoneArray, axis=axis)
max = algs.max_per_block(dsa.NoneArray, axis=axis)
sum = algs.sum_per_block(dsa.NoneArray, axis=axis)
mean = algs.mean_per_block(dsa.NoneArray, axis=axis)
else:
min = algs.min_per_block(array, axis=axis)
max = algs.max_per_block(array, axis=axis)
sum = algs.sum_per_block(array, axis=axis)
mean = algs.mean_per_block(array, axis=axis)
if array is g and axis == 0:
ug = algs.unstructured_from_composite_arrays(mean, [(mean, 'mean')])
if mean is dsa.NoneArray:
res &= ug.GetNumberOfPoints() == 0
else:
_array = ug.GetPointData().GetArray('mean')
ntuples = _array.GetNumberOfTuples()
for i in range(ntuples):
if rank == 1:
idx = i+3
else:
idx = i
res &= _array.GetTuple(i) == tuple(mean.Arrays[idx])
res &= algs.min_per_block(dsa.NoneArray) is dsa.NoneArray
if rank == 0:
min = algs.min_per_block(rtdata.Arrays[0]/2)
elif rank == 2:
min = algs.min_per_block(dsa.NoneArray)
res &= min is dsa.NoneArray
else:
min = algs.min_per_block(rtdata.Arrays[0])
if rank == 0:
min = algs.min(rtdata.Arrays[0])
res &= min == numpy.min(rtdata.Arrays[0])
else:
min = algs.min(dsa.NoneArray)
res &= min is dsa.NoneArray
res &= algs.min(dsa.NoneArray) is dsa.NoneArray
if rank == 0:
res &= numpy.all(algs.min(g2, axis=0) == numpy.min(g2.Arrays[0], axis=0))
else:
res &= algs.min(dsa.NoneArray, axis=0) is dsa.NoneArray
res = numpy.array(res, dtype=numpy.bool)
all_res = numpy.array(res)
mpitype = algs._lookup_mpi_type(numpy.bool)
MPI.COMM_WORLD.Allreduce([res, mpitype], [all_res, mpitype], MPI.LAND)
assert all_res
|