1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
|
/*=========================================================================
Program: Visualization Toolkit
Module: vtkRecursiveSphereDirectionEncoder.cxx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkRecursiveSphereDirectionEncoder.h"
#include "vtkObjectFactory.h"
#include <cmath>
vtkStandardNewMacro(vtkRecursiveSphereDirectionEncoder);
// Construct the object. Initialize the index table which will be
// used to map the normal into a patch on the recursively subdivided
// sphere.
vtkRecursiveSphereDirectionEncoder::vtkRecursiveSphereDirectionEncoder()
{
this->RecursionDepth = 6;
this->IndexTable = NULL;
this->DecodedNormal = NULL;
this->InitializeIndexTable();
}
// Destruct a vtkRecursiveSphereDirectionEncoder - free up any memory used
vtkRecursiveSphereDirectionEncoder::~vtkRecursiveSphereDirectionEncoder()
{
delete [] this->IndexTable;
delete [] this->DecodedNormal;
}
int vtkRecursiveSphereDirectionEncoder::GetEncodedDirection( float n[3] )
{
float t;
int value;
int xindex, yindex;
float x, y;
if ( this->IndexTableRecursionDepth != this->RecursionDepth )
{
this->InitializeIndexTable();
}
// Convert the gradient direction into an encoded index value
// This is done by computing the (x,y) grid position of this
// normal in the 2*NORM_SQR_SIZE - 1 grid, then passing this
// through the IndexTable to look up the 16 bit index value
// Don't use fabs because it is slow - just convert to absolute
// using a simple conditional.
t =
((n[0]>=0.0)?(n[0]):(-n[0])) +
((n[1]>=0.0)?(n[1]):(-n[1])) +
((n[2]>=0.0)?(n[2]):(-n[2]));
if ( t )
{
t = 1.0 / t;
x = n[0] * t;
y = n[1] * t;
xindex = (int)((x+1.0)*(float)(this->InnerSize) + 0.5);
yindex = (int)((y+1.0)*(float)(this->InnerSize) + 0.5);
if ( xindex > 2*this->InnerSize )
{
xindex = 2*this->InnerSize;
}
if ( yindex > 2*this->InnerSize )
{
yindex = 2*this->InnerSize;
}
value = this->IndexTable[xindex*(this->OuterSize+this->InnerSize) + yindex];
// If the z component is less than 0.0, add this->GridSize to the
// index
if ( n[2] < 0.0 )
{
value += this->GridSize;
}
}
else
{
value = 2*this->GridSize;
}
return value;
}
float *vtkRecursiveSphereDirectionEncoder::GetDecodedGradient( int value )
{
if ( this->IndexTableRecursionDepth != this->RecursionDepth )
{
this->InitializeIndexTable();
}
return (this->DecodedNormal + value*3);
}
int vtkRecursiveSphereDirectionEncoder::GetNumberOfEncodedDirections( void )
{
int outer_size, inner_size;
int norm_size;
outer_size = (int)(pow( 2.0, (double) this->RecursionDepth ) + 1);
inner_size = outer_size - 1;
norm_size = outer_size * outer_size + inner_size * inner_size;
return (norm_size*2 + 1);
}
float *vtkRecursiveSphereDirectionEncoder::GetDecodedGradientTable( void )
{
if ( this->IndexTableRecursionDepth != this->RecursionDepth )
{
this->InitializeIndexTable();
}
return this->DecodedNormal;
}
// Initialize the index table. This is a 2*NORM_SQR_SIZE - 1 by
// 2*NORM_SQR_SIZE - 1 entry table that maps (x,y) grid position to
// encoded normal index. The grid position is obtained by starting
// with an octahedron (comprised of 8 triangles forming a double
// pyramid). Each triangle is then replaced by 4 triangles by joining
// edge midpoints. This is done recursively until NORM_SQR_SIZE
// vertices exist on each original edge. If you "squish" this octahedron,
// it will look like a diamond. Then rotate it 45 degrees, it will
// look like a square. Then look at the pattern of vertices - there
// is a NORM_SQR_SIZE by NORM_SQR_SIZE grid, with a (NORM_SQR_SIZE-1) by
// NORM_SQR_SIZE - 1 grid inside of it. The vertices all fall on
// (x,y) locatiions in a grid that is 2*NORM_SQR_SIZE - 1 by
// 2*NORM_SQR_SIZE - 1, although not every (x,y) location has a vertex.
void vtkRecursiveSphereDirectionEncoder::InitializeIndexTable( void )
{
int i, j, index, max_index;
int xindex, yindex;
float x, y, z, tmp_x, tmp_y;
float norm;
int limit;
// Free up any memory previously used
delete [] this->IndexTable;
delete [] this->DecodedNormal;
this->OuterSize = (int)(pow( 2.0, (double) this->RecursionDepth ) + 1);
this->InnerSize = this->OuterSize - 1;
this->GridSize =
this->OuterSize * this->OuterSize +
this->InnerSize * this->InnerSize;
// Create space for the tables
this->IndexTable = new int [(this->OuterSize + this->InnerSize) *
(this->OuterSize + this->InnerSize)];
// Initialize the table to -1 -- we'll use this later to determine which
// entries are still not filled in
for ( i = 0; i < ( (this->OuterSize + this->InnerSize) *
(this->OuterSize + this->InnerSize) ); i ++ )
{
this->IndexTable[i] = -1;
}
this->DecodedNormal =
new float [ 3 * ( 1 +
2 * this->OuterSize * this->OuterSize +
2 * this->InnerSize * this->InnerSize ) ];
// Initialize the index
index = 0;
// max_index indicates the largest index we will get - the number
// of vertices in the two-grid square. This represents half the
// normals, and max_index is used to offset from one half into the
// other. One half of the normals have z components >= 0, and the
// second half (all with indices above max_index) have z components
// that are <= 0.
max_index = this->GridSize;
// The last normal (max_index*2) is the zero normal
this->DecodedNormal[3*(max_index*2) + 0] = 0.0;
this->DecodedNormal[3*(max_index*2) + 1] = 0.0;
this->DecodedNormal[3*(max_index*2) + 2] = 0.0;
// The outer loop is for this->OuterSize + this->InnerSize rows
for ( i = 0; i < this->OuterSize + this->InnerSize; i++ )
{
// Compute the y component for this row
tmp_y = (float)(2*i)/(float)(this->InnerSize*2) - 1.0;
// On the odd rows, we are doing the small grid which has
// this->InnerSize elements in it
limit = ( i%2 )?(this->InnerSize):(this->OuterSize);
for ( j = 0; j < limit; j++ )
{
// compute the x component for this column
if ( i%2 )
{
tmp_x = (float)(2*j)/(float)(this->InnerSize) -
1.0 + (1.0/(float)(this->InnerSize));
}
else
{
tmp_x = (float)(2*j)/(float)(this->InnerSize) - 1.0;
}
// rotate by 45 degrees
// This rotation intentionally does not preserve length -
// we could have tmp_x = 1.0 and tmp_y = 1.0, we want this
// to lie within [-1.0,1.0] after rotation.
x = 0.5 * tmp_x - 0.5 * tmp_y;
y = 0.5 * tmp_x + 0.5 * tmp_y;
// compute the z based on the x and y values
if ( x >= 0 && y >= 0 )
{
z = 1.0 - x - y;
}
else if ( x >= 0 && y < 0 )
{
z = 1.0 - x + y;
}
else if ( x < 0 && y < 0 )
{
z = 1.0 + x + y;
}
else
{
z = 1.0 + x - y;
}
// Normalize this direction and set the DecodedNormal table for
// this index to this normal. Also set the corresponding
// entry for this normal with a negative z component
norm = sqrt( (double)( x*x + y*y + z*z ) );
this->DecodedNormal[3*index + 0] = x / norm;
this->DecodedNormal[3*index + 1] = y / norm;
this->DecodedNormal[3*index + 2] = z / norm;
this->DecodedNormal[3*(index+max_index) + 0] = x / norm;
this->DecodedNormal[3*(index+max_index) + 1] = y / norm;
this->DecodedNormal[3*(index+max_index) + 2] = -(z / norm);
// Figure out the location in the IndexTable. Be careful with
// boundary conditions.
xindex = (int)((x+1.0)*(float)(this->InnerSize) + 0.5);
yindex = (int)((y+1.0)*(float)(this->InnerSize) + 0.5);
if ( xindex > 2*this->InnerSize )
{
xindex = 2*this->InnerSize;
}
if ( yindex > 2*this->InnerSize )
{
yindex = 2*this->InnerSize;
}
this->IndexTable[xindex*(this->OuterSize+this->InnerSize) + yindex] = index;
// Do the grid location to the left - unless we are at the left
// border of the grid. We are computing indices only for the
// actual vertices of the subdivided octahedron, but we'll
// convert these into the IndexTable coordinates and fill in
// the index for the intermediate points on the grid as well.
// This way we can't get bitten by a scan-conversion problem
// where we skip over some table index due to precision, and
// therefore it doesn't have a valid value in it.
if ( tmp_x > 0 )
{
x = 0.5 * (tmp_x - (1.0/(float)this->InnerSize)) - 0.5 * tmp_y;
y = 0.5 * (tmp_x - (1.0/(float)this->InnerSize)) + 0.5 * tmp_y;
xindex = (int)((x+1.0)*(float)(this->InnerSize) + 0.5);
yindex = (int)((y+1.0)*(float)(this->InnerSize) + 0.5);
if ( xindex > 2*this->InnerSize )
{
xindex = 2*this->InnerSize;
}
if ( yindex > 2*this->InnerSize )
{
yindex = 2*this->InnerSize;
}
this->IndexTable[xindex*(this->OuterSize+this->InnerSize) + yindex] = index;
}
// On the odd rows we also need to do the last grid location on
// the right.
if ( (i%2) && (j == limit - 1) )
{
x = 0.5 * (tmp_x + (1.0/(float)this->InnerSize)) - 0.5 * tmp_y;
y = 0.5 * (tmp_x + (1.0/(float)this->InnerSize)) + 0.5 * tmp_y;
xindex = (int)((x+1.0)*(float)(this->InnerSize) + 0.5);
yindex = (int)((y+1.0)*(float)(this->InnerSize) + 0.5);
if ( xindex > 2*this->InnerSize )
{
xindex = 2*this->InnerSize;
}
if ( yindex > 2*this->InnerSize )
{
yindex = 2*this->InnerSize;
}
this->IndexTable[xindex*(this->OuterSize+this->InnerSize) + yindex] = index;
}
// Increment the index
index++;
}
}
// The index table has been initialized for the current recursion
// depth
this->IndexTableRecursionDepth = this->RecursionDepth;
// Spread the first index value in each row to the left, and the last to the right.
// This is because we have only filled in a diamond of index values within the square
// grid, and we need to be careful at the edges due to precision problems. This way
// we won't be able to access a table location that does not have a valid index in it.
for ( j = 0; j < this->OuterSize + this->InnerSize; j++ )
{
// Start from the middle going right, copy the value from the left if
// this entry is not initialized
for ( i = (this->OuterSize+this->InnerSize)/2;
i < this->OuterSize + this->InnerSize; i++ )
{
if ( this->IndexTable[j*(this->OuterSize+this->InnerSize)+i] == -1 )
{
this->IndexTable[j*(this->OuterSize+this->InnerSize)+i] =
this->IndexTable[j*(this->OuterSize+this->InnerSize)+i-1];
}
}
// Start from the middle going left, copy the value from the right if
// this entry is not initialized
for ( i = (this->OuterSize+this->InnerSize)/2; i >= 0; i-- )
{
if ( this->IndexTable[j*(this->OuterSize+this->InnerSize)+i] == -1 )
{
this->IndexTable[j*(this->OuterSize+this->InnerSize)+i] =
this->IndexTable[j*(this->OuterSize+this->InnerSize)+i+1];
}
}
}
}
// Print the vtkRecursiveSphereDirectionEncoder
void vtkRecursiveSphereDirectionEncoder::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os,indent);
os << indent << "Number of encoded directions: " <<
this->GetNumberOfEncodedDirections() << endl;
os << indent << "Recursion depth: " << this->RecursionDepth << endl;
}
|